DIABETIC KETOACIDOSIS IN TYPE 1 DIABETIC CHILDREN AND ADOLESCENTS

Thesis

Submitted for Fulfillment of the Master Degree in Pediatrics

Presented By

Heba Mohamed Sayed

(M.B.B.Ch)

Under the Supervision of

Prof. Dr. Mona Attia Hana

Professor of Pediatrics

Faculty of Medicine - Cairo University

Prof. Dr. Shereen Abdelghaffar

Professor of Pediatrics

Faculty of Medicine - Cairo University

Prof. Dr. Abeer Atef Alashmawy

Professor of Pediatrics

Faculty of Medicine - Cairo University

Faculty of Medicine
Cairo University
2009

بسم الله الرحمن الرحيم وقُلِ الْحَمْدُ لِلَّهِ سَيُرِيكُمْ آيَاتِهِ فَتَعْرِفُونَهَا وَمَا رَقُلِ الْحَمْدُ لِلَّهِ سَيُرِيكُمْ آيَاتِهِ فَتَعْرِفُونَهَا وَمَا رَقُلُ اللهِ سَيُرِيكُمْ آيَاتِهِ فَتَعْرِفُونَهَا وَمَا رَقُلُ اللهِ سَيْرِيكُمْ آيَاتِهِ فَتَعْرِفُونَهَا وَمَا رَقُلُ اللهِ اللهُ اللهِ اللهِ اللهُ اللهِ اللهِ اللهِ اللهُ اللهِ اللهُ الل

صدق الله العظيم سورة النمل (آية 93)

ABSTRACT

Diabetic ketoacidosis (DKA) is an acute, major, life-threatening complication of diabetes. In this study sixty- three patients were included; history, clinical examination, and laboratory investigations were performed. It was concluded from the study that infection, delayed diagnosis of type 1 diabetes and omission of insulin dose are the most important risk factors precipitating DKA. It was also concluded that, the current treatment protocols is efficient, safe and reliable.

Keywords:

- Diabetic ketoacidosis
- Type 1 diabetes mellitus

Acknowledgment

In the first place I would like to record my gratitude to **ALLAH**, who made all things possible.

This work would not have been possible without the support and encouragement of Prof. Dr. **Mona Attya Hana**, Professor of Pediatrics, Faculty of Medicine – Cairo University, under whose supervision I chose this topic and began the thesis. She has been abundantly helpful, and assisted me in numerous ways. I am greatly indebted to her.

I would like to record my gratitude to Prof. Dr. Shereen Abdelghaffar, Professor of Pediatrics, Faculty of Medicine – Cairo University, for her supervision, advice, and guidance from the very early stage, which made her a backbone of this research and so to this thesis.

I gratefully acknowledge Prof. Dr. **Abeer Atef Alashmawy**, Professor of Pediatrics, Faculty of Medicine – Cairo University, for her advice, supervision, and crucial contribution, as well as giving me extraordinary experiences throughout the work.

Words fail me to express my appreciation to my Husband whose dedication, love and persistent confidence in me, has taken the load off my shoulder. I cannot end without thanking my family, on whose constant encouragement and love I have relied throughout my life.

Finally, I would like to thank everybody who was important to the successful realization of thesis, as well as expressing my apology that I could not mention personally one by one.

Contents

	Page
Introduction and Aim of work	1
Review of literature	
• Epidemiology	4
• Diagnosis	19
Management	41
• Complications	64
Patients and Methods	76
Results	82
Discussion	132
Summary and conclusion	150
Recommendation	154
References	
Appendix	
Arabic summary	

List of Tables

		Page
Review of literature		
Table 1	Clinical assessment of dehydration	20
Table 2	Baseline investigations required in DKA	22
Table 3	Diagnostic Criteria for Diabetic Ketoacidosis	25
Table 4	Paediatric version of the Glasgow Coma Scale	31
Table 5	Potassium Chloride administration in DKA	50
Table 6	Summary of major recommendations in treatment of DKA.	57
Table 7	Strategies to prevent diabetic ketoacidosis	61
Table 8	Bedside evaluation of neurological state of children with	70
	DKA	
Patients and methods		
Table 9	Deficit fluids requirements	78
Table 10	Potassium Chloride therapy in DKA	79
Results		
Table 11	Age groups of all cases	83
Table 12	Number of patients according to month of admission	84
Table 13	Categorization of patients regarding onset of diabetes	85
Table 14	Relative frequency of symptoms & signs of cases with	86
	DKA	
Table 15	Anthropometric data and vital signs of patients with DKA	88
Table 16	The possible precipitating causes of DKA in first presentation of diabetes and known diabetics	89

i

Table 17	Different sites of infection among cases with DKA and infection	91
Table 18	Hematological indices in patients with DKA	93
Table 19	Serum electrolytes, osmolality and renal functions in patients with DKA	95
Table 20	Initial corrected sodium (Na) levels among cases with DKA	96
Table 21	Initial effective osmolality values among patients with DKA	97
Table 22	Initial serum potassium (K) levels among cases with DKA	98
Table 23	Relative frequency of different degrees of dehydration	100
Table 24	Comparison of frequency of degree of dehydration among male and female patients	101
Table 25	Comparison of mean chronological age among patients with different degrees of dehydration	102
Table 26	Comparison of mean levels of initial blood glucose among patients with different degrees of dehydration	103
Table 27	Comparison of mean levels of initial serum sodium (Na) among patients with different degrees of dehydration	104
Table 28	Comparison of mean levels of initial corrected sodium among patients with different degrees of dehydration	105
Table 29	Comparison of mean levels of initial serum potassium among patients with different degrees of dehydration	106
Table 30	Comparison of mean levels of initial serum pH among patients with different degrees of dehydration	107
Table 31	Comparison of mean levels of initial serum HCO ₃ among patients with different degrees of dehydration	108
Table 32	Comparison of mean levels of initial blood urea nitrogen	109

	among patients with different degrees of dehydration	
Table 33	Comparison of mean levels of initial serum creatinine	110
	among patients with different degrees of dehydration	
Table 34	Comparison of mean levels of initial effective calculated	111
	osmolality among patients with different degrees of	
	dehydration	
Table 35	Changes in serum sodium (Na) concentration during	112
	treatment of DKA.	
Table 36	Changes in serum potassium (K) concentration during	113
	treatment of DKA	
Table 37	Changes in blood glucose concentration during	114
	treatment of DKA	
Table 38	Changes in serum pH during treatment of DKA	115
Table 39	Changes in serum bicarbonate concentration during	116
	treatment of DKA	
Table 40	Descriptive statistics of therapeutic data of patients with	118
	DKA	
Table 41	Correlation of initial blood glucose with initial effective	119
	calculated osmolality, initial corrected sodium and initial	
	serum pH	
Table 42	Correlation of duration of correction of hyperglycemia	121
	with initial blood glucose, serum pH and effective	
	calculated osmolality	
Table 43	Relation of corrected sodium with initial serum sodium	122
Table 44	Correlation of initial serum creatinine with initial blood	122
	glucose, serum pH, corrected sodium, serum sodium and	
	potassium	

Table 45	Comparison of different biochemical variables in patients	124
	with normal and disturbed conscious level	
Table 46	Follow up of the case no. 14	130
Table 47	Follow up of the case no.43	131

List of Figures

		Page
Review o	of literature	
Fig. 1	Pathophysiology of DKA.	8
Fig. 2	Lipid and ketone metabolism in DKA.	12
Fig. 3	Proposed biochemical changes that occur during DKA.	14
Fig. 4	A graphical representation of the ECG changes of hypokalemia.	29
Fig. 5	A graphical representation of the ECG changes of hyperkalemia.	30
Fig. 6	The triad of DKA (hyperglycemia, acidemia, and ketonemia).	33
Fig. 7	Diagram of two parallel bags to infuse hydration solution in patient with DKA.	56
Results		
Fig. 8	Distribution of studied cases by sex.	82
Fig. 9	Age groups of all cases	83
Fig. 10	Number of patients according to month of admission	84
Fig. 11	Categorization of patients regarding onset of diabetes	85
Fig. 12	Relative frequency of symptoms & signs of cases with DKA	87
Fig. 13	The possible precipitating causes of DKA in first presentation of diabetes and known diabetics	89
Fig. 14	Percentage of shift to left among studied cases	90
Fig. 15	Different sites of infection among cases with DKA	91
Fig. 16	Initial corrected sodium (Na) levels among cases with DKA	96
Fig. 17	Initial effective osmolality values among patients with DKA	97

Fig. 18	Initial serum potassium levels among cases with DKA	98
Fig. 19	Severity of diabetic ketoacidosis among cases with DKA	99
Fig. 20	Relative frequency of different degrees of dehydration	100
Fig. 21	Comparison of frequency of degree of dehydration among male and female patients	101
Fig. 22	Comparison of mean chronological age among patients with different degrees of dehydration	102
Fig. 23	Comparison of mean levels of initial blood glucose among patients with different degrees of dehydration	103
Fig. 24	Comparison of mean levels of initial serum sodium (Na) among patients with different degrees of dehydration	104
Fig. 25	Comparison of mean levels of initial corrected sodium among patients with different degrees of dehydration	105
Fig. 26	Comparison of mean levels of initial serum potassium among patients with different degrees of dehydration	106
Fig. 27	Comparison of mean levels of initial serum pH among patients with different degrees of dehydration	107
Fig. 28	Comparison of mean levels of initial serum HCO ₃ among patients with different degrees of dehydration	108
Fig. 29	Comparison of mean levels of initial blood urea nitrogen among patients with different degrees of dehydration	109
Fig. 30	Comparison of mean levels of initial serum creatinine among patients with different degrees of dehydration	110
Fig. 31	Comparison of mean levels of initial effective calculated osmolality among patients with different degrees of	111

	dehydration	
Fig. 32	Changes in serum sodium concentration during treatment	112
	of DKA	
Fig. 33	Changes in serum potassium concentration during	113
	treatment of DKA	
Fig. 34	Changes in blood glucose concentration during treatment	114
	of DKA	
Fig. 35	Changes in serum pH during treatment of DKA	115
Fig. 36	Changes in serum bicarbonate concentration during	116
	treatment of DKA	
Fig. 37	Correlation of initial blood glucose with initial effective	119
	calculated osmolality	
Fig. 38	Correlation of initial blood glucose with initial corrected	120
	sodium	
Fig. 39	Correlation of initial blood glucose with initial serum pH	120
Fig. 40	Correlation of duration of correction of hyperglycemia with	121
	initial blood glucose	
Fig. 41	Correlation of initial serum creatinine with initial blood	123
	glucose	
Fig. 42	Correlation of initial serum creatinine with initial serum pH	123
Fig. 43	Comparison of different biochemical variables in patients	125
	with normal and disturbed conscious level	
Fig. 44	Comparison of different biochemical variables in patients	126
	with normal and disturbed conscious level	

List of Abbreviations

AaO₂ : Alveolar-to-arteriolar oxygen.

ACE : Angiotensin converting enzyme.

ADA : American Diabetes Association.

BE: Brain edema.

BUN : Blood urea nitrogen.

CNS : Central nervous system.

CPT: Carnitine palmitoyl-transferase.

CRP: C-reactive protein.

CSII : Continuous subcutaneous insulin infusion.

CT : Computerized tomography.

CXR : Chest X-ray.

DCL : Disturbed conscious level.

DKA : Diabetic ketoacidosis.

DM : Diabetes mellitus.

ECG : Electrocardiogram.

F-6-P : Fructose-6-phosphate.

FFA : Free fatty acid.

Fig. : Figure.

G-6-P : Glucose-6-phosphate.

HHNS : Hyperglycemic hyperosmolar nonketotic syndrome.

HK: Hexokinase.

HMP : Hexose monophosphate.

ICU : Intensive care unit.

K : Potassium.

MRI : Magnetic resonance imaging.

MSU : Mid-stream urine.

Na : Sodium.

PC : Pyruvate carboxylase.

PEP : Phosphoenolpyruvate.

PEPCK : Phosphoenol pyruvate carboxykinase

PFK: Phosphofructokinase.

PK : Pyruvate kinase.

ß-OHB : Beta-hydroxybutyrate.

T2 DM : Type 2 diabetes mellitus.

TCA : Tricarboxylic acid.

TG: Triglycerides.

WBC : White Blood Cell.

Introduction and Aim of work