ECG Abnormalities in Cirrhotic Pediatric patients

Thesis

Submitted for the fulfillment of master degree in Pediatrics

By
Haytham Mohamad Mohamad Awad
MB.B.CH Cairo University

supervisors

Prof.Dr. Hanaa Mostafa Elkaraksy Professor of Pediatrics - Faculty of medicine Cairo University

Dr. Ranya Ali Hegazy
Lecturer of Pediatrics - Faculty of medicine
Cairo University

Dr. Hanan Zekri Khaled
Lecturer of Pediatrics - Faculty of medicine
Cairo University

Faculty of medicine Cairo University 2009

Abstract

The study included 30 patients diagnosed to have liver cirrhosis due to any aetiology by biopsy and 30 clinically free children of the same age group were also included as a control group.

The diseased group was subjected to thorough history taking, clinical examination and laboratory investigation in the form of serum bilirubib and albumin, liver enzymes, prothrombin time and complete blood count; they also had abdominal sonar to detect ascites. Both cases and control group underwent resting 12 lead ECG assessments.

Key Words: ECG Abnormalities - Cirrhotic Pediatric patients

Contents

	Page
List of tables	· I
List of figures	II
List of abbreviations	IV
Acknowledgment	VI
Introduction and aim of the work	- 1
Review:	
-Hepatic cirrhosis	3
-Cardiovascular dysfunction in chronic liver disease	33
-Electrocardiograph	48
Patients and methods	68
Results	74
Discussion	89
Conclusion and recommendations	95
Summary	96
References	98
Appendix i-	-xix

List of abbreviations

ALT Alanine aminotranseferases AMA Antimitochondrial antibodies

ANA Antinuclear antibodies
ANP Atrial natriuretic Peptide

ASD Atrial septal defect

AST Aspartate amino transferases

AV Atrio-ventricular
Bil D Direct bilirubin
Bil T Total bilirubin

BNP B type natriuretic peptide
CBC Complete blood count
CHF Congestive heart failure
CO Carbon mono oxide
CT Computed Tomography
ECG Electrocardiograph

EHBA Extrahepatic biliary atresia
HB% Haemoglobin percent
HBV Hepatitis B virus
HCV Hepatitis C virus

HPS Hepato pulmonary syndrome

LAH Left atrial hypertrophy
LBBB Left bundle branch block

LKM Liver kidney microsomal antibodies

LV Left ventricle

LVH Left ventricle hypertrophy

No nitric oxide

MRI Magnetic Resonance Imaging

MRA Magnetic Resonance Angiography PELD Pediatric End stage Liver Disease

PFIC Progressive familial intrahepatic cholestasis

PWD P wave dispersion

OTc OT interval corrected to heart rate

QTd QT interval dispersion RAH right trial hypertrophy

RSA Respiratory Sinus Arrhythmia RBBB Right bundle branch block

RBCs Red blood corpusles RR average Average RR intervals

RV Right ventricle

RVH Right ventricle hypertrophy

TIPS Transjuglar Intrahepatic Porto systemic Shunt

SD Standard deviation

SMASmooth muscle antibodiesSVTSupraventricular tachycardiaTNFάtumour necrosis factor άVSDVentricular septal defect

WBC White blood cells

WHO World Health Organization

WPW Wolf-Parkinson-White syndrome

List of Figures

Figure	Dist of Figures	page
Figure 1	Cirrhosis (microscopic, 10X, trichrome stain)	8
Figure 2	Gross pathology of cirrhotic liver	8
Figure 3	Pathophysiology of liver cirrhosis	10
Figure 4	Pathophysiology of hepatorenal syndrome	18
Figure 5	Ultrasound of a cirrhotic liver	22
Figure 6	Ultrasound of a cirrhotic liver	22
Figure 7	CT abdomen showing cirrhosis	23
Figure 8	Indication for liver transplantation in children	29
Figure 9	Vascular hyporeactivity and atrial compliance in cirrhosis	39
Figure 10	The normal distribution of blood in body compartment	44
Figure 11	The distribution of blood volume in patients with portal hypertension	45
Figure 12	The neurohormonal reflex that causes an increase in renal water and solute absorption	46
Figure 13	Normal ECG waves, segments and intervals	51
Figure 14	Normal ECG of 1 year old infant	51
Figure 15	Electro cardiogram from normal 1 week old infant	52
Figure 16	Electrocardiogram from normal young adult	53
Figure 17	Comparison of P axis in sinus rhythm and low atrial rhythm	55
Figure 18	The six limb leads and blotted QRS axis	58
Figure 19	Sex distribution in the studied cases	74
Figure 20	Aetiology of cirrhosis in the study	75
Figure 21	Incidence of Ascites in the studied cases	76
Figure 22	Comparison between QTc of patients and controls	78

List of Figures (follow)

Figure 23	Comparison between QTd of patients and controls included in the study	79
Figure 24	Incidence of ECG findings in the studied cases	79
Figure 25	Comparison between icidence of RSA in patients and controls	80
Figure 26	Correlation between QTc and total bilirubin	84
Figure 27	Correlation between QTc and serum albumin among study cases	84
Figure 28	Correlation between QTc and PT	85
Figure 29	Correlation between QTc and Pugh's score	85
Figure 30	Correlation between QTd and Pugh's score	86

List of Tables

table		page
Table 1	Disorders producing chronic hepatitis	5
Table-2	Common physical examination fndings in liver cirrhosis	15
Table-3	Major pulmonary consequences in patients with advanced, non malignant liver disorders:-	17
Table-4	Diagnostic tests in chronic liver disease and cirrhosis	20
Table-5	Child's grading of disease severity in chronic liver disease	25
Table-6	circulatory changes in patient with cirrhosis	42
Table-7	normal heart rate for different ages	56
Table-8	R wave amplitude (mv) for males and females in leads V1 and V6	61
Table-9	PR Interval, Rate and upper limits of norma for age	63
Table-10	Comparison between ECG findings of patients and controls included in the study.	77
Table-11	Comparison between demographic and laboratory findings of patients included in the study in relation to cut off value of QTc.	81
Table-12	Correlation between ECG findings and laboratory findings.	83
Table-13	Correlation of QTC QTmax QTmin QTd PWD and Ascites.	87
Table-14	Comparison between demographic and laboratory findings of patients included in the study in relation to cut off value of PWD.	88

Introduction and Aim of the Work

Liver cirrhosis is a form of chronic liver injury that that represents an end stage of virtually any progressive liver disease (*Hardy and Klienman*, 2007).

The prevalence of liver cirrhosis is difficult to estimate, because many persons with compensated cirrhosis do not exhibit signs or symptoms of the disease and because noninvasive studies lack sensitivity to detect cirrhosis at early stages. Moreover there is tremendous geographical variability of cirrhosis worldwide, depending on the prevalence of the causative factors such as viral hepatitis B and C, metabolic liver disease, iron overload, autoimmune liver disease. The incidence of cirrhosis is high in children with chronic hepatitis, especially of the autoimmune type (89%) followed by hepatitis B(32%). cirrhosis may occur early, irrespective of cause(*Vajro et al.*, *1990*).

Liver cirrhosis is associated with several cardiovascular abnormalities. Shortly after recognition of the hyperdynamic circulatory state in the liver, **Ma** and **Lee** studies in 1996 suggested that cardiac contractile response during increased demand was subnormal in cirrhotic patients. This finding resulted in the recognition that a unique form of high output cardiac dysfunction occurs in chronic liver disease.

The pathogenesis of cardiac dysfunction in liver disease is likely involves a number of abnormalities, alteration in cardiac ß adrenergic signaling(Al Hamoudi et al, 2006), decreased plasma membrane fluidity, increased cardiac nitric oxide production(Baik et al, 2005), elevated circulatory level of catecholamines (Milani et al, 2006), have all been suggested to contribute to cardiac dysfunction.

Clinically cardiac dysfunction is often mild or latent in cirrhosis a finding some have attributed to the after load reducing effect of systemic vasodilatation that decreased cardiac work (*Mandell and Tsou*, 2008).

Electrophysiological abnormalities including prolonged repolarization and impaired cardiac excitation-contraction coupling have been demonstrated in cirrhotic patients (*Tervesani et al, 2003*).

QT interval prolongation is currently considered one of the electrophysiological abnormalities of the cirrhotic cardiomyopathy, which significantly affects the hemodynamic homeostasis in decompensated cirrhosis. QT interval prolongation is common in cirrhosis, irrespective of its etiology (*Zambruni et al, 2008*).

Delayed cardiac repolarization may adversely affect survival under stressful conditions challenging heart function, such as sepsis, bleeding or major surgery including liver transplantation (*Zambruni et al.*, 2008).

The aim of the present study was to detect the prevalence and types of ECG abnormalities among cirrhotic pediatric patients. we also aimed to delineate the correlation of these abnormalities to the aetiology, duration, severity of cirrhosis and other risk factors.

Patients and methods

Study Design:-

a prospective cross sectional study including 30 cirrhotic children and 30 age and sex matched clinically free children as a control group. The study was conducted in the time period between November 2008 and April 2009.

Study setting:-

The study group was recruited from the hepatology outpatient clinic at the Cairo university children hospital Parents of the participating children gave their consent to the study.

Inclusion criteria:

- * Cirrhosis of any etiology ,diagnosis of cirrhosis is done by liver biopsy
- * Age rage between 4 months and 14 years
- * Both sexes are included .

Exclusion criteria:

- * Congenital heart disease.
- * Acute superimposed illness.
- * Hepatorenal syndrome.
- * Other system organ disease.

- * Antiarrhythmic drug intake
- *Electrolytes imbalance

Methods

All cases and controls were subjected to full history taking, examination, and standard 12 ECG and laboratory investigations.

History taking

All the infants underwent thorough history taking and examination. The history includes the following:

- * Personal history with special reference to age and sex.
- * Complaint
- * History of present illness included:
- 1- Onset, course and duration.
- 2- Age of onset
- 3- Presence of jaundice, colour of urine and stools. Abdominal distension, haematemesis, melena, bleeding from orifices, bleeding under the skin, pruritus, skin rash, arthritis, medications, fainting attacks, palpitations and other system affection symptoms.
- 4- Past history with emphasis upon total parental nutrition, incubator care, previous hospitalization, surgical intervention, blood transfusion and medications.
- 5- Family history of consanguinity, similar condition in the family and history of previous abortions and sib death.

- 6- Developmental history.
- 7- Nutritional history.
- 8- Vaccination history.

Examination:

Each child was examined thoroughly. The general examination included:

- * Vital signs: heart rate, blood pressure, temperature and respiratory rate.
- * Anthropometric measures.
- * Examination for jaundice ,pallor .lower limb edema ,purpuric eruptions and clubbing
- * Chest examination
- * Full cardiac examination to detect any structural cardiac anomalies.
- * Abdominal examination (inspection, palpation, percussion) to detect dilated abdominal wall veins, organomegaly, ascites and cutaneous manifestations of liver disease (spider angiomas, vascular spiders, palmar erythyma and xanthomas).

Laboratory investigations:

Children underwent:

- * Complete blood count.
- * Total and direct bilirubin level estimation.
- * Aspartate and alanine aminotransferases (AST and ALT).
- * Alkaline phpsphatase.

- * Prothrombin time and concentration.
- * TORCH screening, autoantibodies i.e.: antinuclear antibodies(ANA),smooth muscle antibodies (SMA), antimitochondrial antibodies(AMA), liver kidney microsomal antibodies (LKM) according to clinical setting.

Abdominal Sonography:

Abdominal Sonography to detect:

- * Liver, spleen and kidney sizes.
- * Omental thickening and other signs of portal hypertension.
- * Ascites.

Percutaneous liver biopsy

As a prerequisite for inclusion ,result were recruited from the patients' charts

Upper endoscopy

Upper endoscopy was performed in selected cases.

Standard 12 lead ECG:

A standard 12 lead ECG was performed during sinus rhythm. All routine measurements were taken(heart rate , rhythm, axis, P wave amplitude and duration, PR interval, QT interval, QRS complex(voltage amplitude of R and S waves in V1&V6. the presence of respiratory sinus arrhythmia was determined

.

Particular stress was done on

P wave :-

P wave max, min and P wave dispersion

The onset of pwave was defined as the junction between the isoelectric line and the beginning of the P wave deflection. The offset of the P wave was defined as the junction between the isoelectric line and the end of P wave deflection.

Electrocardiogram with measurable Pwave is less than 9 ECG leads were repeated. P wave dispersion was calculated as the difference between the max and min P waves.

(Dilareris et al, 1998)

QT intervals

QT intervals were measured in all 12 leads if possible, but in at least six leads. The average of three consecutive beats for each lead was taken whenever possible.

The QT interval was measurd from the beginning of the QRS complex to the end of the T wave . the end of the T wave was defined as the return of voltage to the isoelectric line . if a U wave was present measurements were taken to the nadir of the curve or notch between the T and U waves.

QT intervals were corrected for heart rate using Bazett's formula(QTc=QT/ \sqrt{RR}).

QT intervals reported as the maximum QT found on the 12 lead ECG (QTmax).