Umbilical Cord Blood CD34 cells in Preterm and Full Term Neonates

Thesis Submitted for Partial Fulfillment of Master Degree in Pediatrics

By Eman Abdel Aziz Mohamed MB. B.Ch. Ain Shams University 2004

Supervisors **Professor/ Sahar Mohamed Hassanein**

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Professor/ Amr Abdel Aziz Nadim

Professor of Obstetrics& Gynecology Faculty of Medicine – Ain Shams University

Professor/ Hanaa Ahmed Amer

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2010

List of Contents

	Page
Abbreviation	I-III
List of tables	IV-V
List of figures	VI
Introduction and Aim of the Work	1
Chapter 1: Preterm infants and stem cel	ls3
Morbidity of preterm infants	7
Morbidity assessment of preterm infants	13
Chapter 2: Umbilical cord blood stem ce	lls 21
Classification of stem cells	22
Function of Stem Cells	29
CD34 marker	30
Umbilical cord blood	34
Methods of collection of Cord Blood Stem	Cells36
Factors Affecting Cord Blood Stem Cells H	Iarvest37
Diseases Treated by Cord Blood Transplan	tation42
Cord Blood Banking	42
Advantages and Disadvantages of Using Co	ord Blood 45

Patients and methods	47
Results	56
Discussion	69
Summary and conclusions	 76
Recommendations	80
References	81
Appendix	•••••
Arabic summary	•••••

Abbreviations

ADA...... Adenosine deaminase

ADHD...... Attention deficit hyperactivity disorder

AML..... Acute myeloid leukaemia

BFU-E...... Burst-forming unit erythroid

BM..... Bone marrow

BMT..... Bone marrow transplant

BPD Bronchopulmonary dysplasia

CB..... Cord blood.

CBU..... Cord blood units.

CFU-GM...... Colony-forming unit granulocyte and macrophage/

monocytes

CFU-S Colony-forming unit spleen

CMV...... Cytomegalo virus

CPD..... Citrate phosphate dextrose

CS..... Cesarean section

DCD Developmental coordination disorder

ELBW..... Extremely low birth weight

ES Embryonic stem cells

GA Gestational age

G-CSF..... Granulocyte colony stimulating factor

GM-CSF Granulocyte–macrophage colony-stimulating

factor

GvHD..... Graft-versus-host disease

HEGCs..... Human embryonic germ cells.

HES...... Human embryonic stem cells

HIV..... Human immunodeficiency virus

HLA Human leukocyte antigen

HSC..... Hematopoietic stem cell

HSCs Haemopoietic stem cells

ISHAGE...... International Society for Cellular Therapy

LBW..... Low birth weight

LDMN..... Low-density mononuclear

LMP Last menstrual period

MAIN..... Morbidity assessment index for newborns

MSCs..... Mesenchymal stem cells

MNC..... Mononuclear cells

NEC..... Necrotizing enterocolitis

NICU...... Neonatal intensive care unit

NK...... Natural killer cells

NMDP...... National Marrow Donor Program

NRBCS...... Nucleated red blood cells

NVD Normal vaginal delivery

PBS..... Phosphate buffer saline

PDA...... Patent ductus arteriosus

PE..... phycoerythrin

PPRM..... Preterm premature rupture of membranes

RDS Respiratory distress syndrome

RLF..... Retrolental fibroplasia

ROP..... Retinopathy of prematurity

SCF..... Stem cell factor

TNC...... Total nucleated cells

WHO World health organization

U.S. United States

UCB..... Umbilical cord blood

UCBT..... Umbilical cord blood transplantation

VLBW...... Very low birth weight

List of Tables

Table		Page
Table (1):	Mortality assessment index for	or newborns
	(MAIN)	13
Table (2):	Neonatal medical index (NMI	() for preterm infants
		15
Table (3):	Genetic and Metabolic disord	ers tested before cord
	blood transplantation	40
Table (4):	Infectious agents tested before	e cord blood
· · · · · · · · · · · · · · · · · · ·	transplantation	
Table (5):	Apgar scoring system	49
Table (6):	Descriptive data	57
Table (7):	Cord CD34 cells % leve	l at different
. ,	gestational age periods	58
Table (8):	Comparison between differen	ent gestational
	age periods and cord CD34 ce	ells % level59
Table (9):	Correlation between differen	ent gestational
	age periods and cord blood Cl	D34 cells %60
Table (10):	Correlation between cord C	CD34 ⁺ cells %
	level and level of different co	ord elements in
	different gestational age perio	ds61

Table (11):	Comparison between vaginally and cesarean section delivered in full term neonates62
Table (12):	Sex and cord CD34 cells % level at different gestational age periods
Table (13):	Cord absolute CD34 cells count in preterm neonates
Table (14):	Correlation between gestational age and absolute cord CD34 cells count
Table (15):	Correlation between APGAR 1, 5 and MAIN scores and different cord cellular elements at 28-36 weeks (n=20)
Table (16):	Comparison between NMI score I and NMI score II & III regarding level of different cord elements at 28-34 weeks gestational age

List of Figures

Figure	Page
Figure (1): Ballard score	49
Figure (2): Median cord blood CD34 ⁺ cel gestational ages	
Figure (3): Correlation between different periods and cord CD34 ⁺ cell	•
Figure (4): Median cord absolute CD34 oneonates	•
Figure (5): Correlation between MAIN so	ore and CD34 %65
Figure (6): Correlation between APGAR CD34%	
Figure (7): Median CD34% in NMI score neonates	•

Introduction

Preterm birth is one of the major clinical problems in obstetrics and neonatology as it is associated with perinatal mortality, serious neonatal morbidity and in some cases childhood disability. It is reported that 60-80% of all neonatal mortality and morbidity is due to preterm birth. During the last two decades the survival for premature infants has significantly increased due to advancement in perinatal and neonatal treatment expertise and improvement in the care of high-risk mother. The survival rate of lower birth weight infant is reported to have increased from 10% to 50-60% (Goldenberg, *2002*).

Stem cells are those, which have remarkable potential to develop into many different cell types in the body. Basically, these cells serve as a sort of repair system for the body; they can theoretically divide without limit to replenish other cells as long as the person or any other living being is still alive. The stem cells' ability to differentiate, or change, into other types of cells in the body, is a new discovery that holds tremendous promise for treating and curing some of the most common diseases such as heart diseases, cancers, stroke, Alzheimer's and many others (Broxmeyer et al., 1992).

Cord blood (CB) has been shown to contain pluripotent stem cells that have the potential to differentiate into non hematopoietic tissue, such as cardiac, neurologic, panceriatic and skin tissue (Cairo et al., 2007).

Aim of the Work

The aim of the study is the assessment of umbilical cord stem cells in preterm and full term neonates, and to correlate the effect of preterm delivery on the percentage of these cells. Also the relation between stem cell count and clinical outcome in preterm neonates will be studied.

Preterm Infants and Stem Cells

Preterm Birth

The standard length of a human gestation is 266 days. However, for convenience most timing is based on the last menstrual period (LMP), with conception being assumed to occur approximately 14 days after the LMP, making a standard term pregnancy 280 days or 40 weeks (*Martin et al.*, 2004).

Premature or preterm birth is defined medically as childbirth occurring earlier than 37 completed weeks of pregnancy or before 259 days according to world health organization (WHO) in 1970. Approximately 12 percent of babies in the United States (U.S.) — or 1 in 8 — are born prematurely each year. Worldwide, prematurity accounts for more than 12.5 percent (Martin et al., 2004).

The exact worldwide rates of prematurity are more difficult to obtain as the lack of widespread professional obstetric care in developing regions makes determination of gestational age less reliable. The WHO in 2005 stated that more than 20 million infants worldwide, representing 15.5 per cent of all births are born with low birth weight (LBW) which is either

Review of Literature

the result of preterm birth or due to restricted fetal (intrauterine) growth, 95.6 per cent of them are in developing countries. The level of low birth weight in developing countries (16.5 per cent) is more than double the level in developed regions (7 per cent). However, these estimates are biased for most developing countries because the majority of newborns are not delivered in facilities and more than half of infants in the developing world are not weighed, and those who are weighed represent only a selected sample of all births (*Wardlaw et al.*, 2005).

Preterm birth is one of the major clinical problems in obstetrics and neonatology as it is associated with perinatal mortality, serious neonatal morbidity and in some cases childhood disability. It is reported that 60-80% of all neonatal mortality and morbidity is due to preterm birth. During the last two decades the survival for premature infants has significantly increased due to advancement in perinatal and neonatal treatment expertise and improvement in the care of high-risk mother. The survival rate of lower birth weight infant is reported to have increased from 10% to 50-60%. In the U.S. where many infections and other causes of neonatal death have been markedly reduced, prematurity is the leading cause of neonatal mortality at 25 % (Mathew and Macdorman, 2003).

The shorter the term of pregnancy, the greater the risks of complications. Infants born prematurely have an increased risk

Review of Literature

of death in the first year of life (infant mortality), with most of that occurring in the first month of life (neonatal mortality) (*Robert*, 1999).

Although there are several known risk factors for prematurity, nearly half of all premature births have no known cause. When conditions permit, doctors may attempt to stop premature labor, so that the pregnancy can have a chance to continue to full term, thereby increasing the baby's chances of health and survival. However, there is no reliable means to stop or prevent preterm labor in all cases. Identification of women at risk of preterm birth is essential to ensure therapies are targeted appropriately. Risk assessments for prediction include previous obstetric history, previous episode of threatened preterm labour (*Groom*, 2007). Fetal fibronectin status and fetal cervical length measured by ultrasound between 18 and 34 gestational weeks can predict preterm birth (fetal fibronectin ≥ 50 ng/mL and fetal cervical length ≤ 25 mm with sensitivity of 63% and 75% respectively) (*Schmitz et al.*, 2006).

The survivors of preterm birth, especially when born at <34 weeks of gestation, require to remain in newborn intensive care unit (NICU). They need to spend time in NICU till close to term to allow for sufficient multi-organ maturation resulting in prolonged hospital stay for both mother and infant. Therefore, the consequences of preterm birth often continue beyond the