

Evaluation of rubber composites as shielding materials against ionizing radiation

!

!

Thesis
Submitted to
Faculty of Science,
Ain Shams University

By

Mona Kamal Atia
B.Sc. of chemistry (2001),
2010

For
The degree of
M. Sc. In chemistry

APPROVAL SHEET

Title of the thesis

Evaluation of rubber composites as shielding materials against ionizing radiation

Name of the candidate

Mona Kamal Atia

Thesis Advisors

Thesis Approved

Prof. Dr. Abdel -Gawad Rabie,

Prof. Dr. of Organic Chemistry, Faculty of Science Ain Shams University.

Prof. Dr. Mohammed Mansour Abdel-Aziz.

Prof. Dr. of Radiation Chemistry, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority.

Prof. Dr. Eglal Raymond Souaya

Prof. Dr. of Inorganic Chemistry, Faculty of Science Ain Shams University.

Credit

Prof. Dr. Fakhry El-Basuiny Head of chemistry department

بسم الله الرحمن الرحيم

" الحمد شه الذي هدانا لهذا وما كنا لنهتدى لولا أن هدانا الله"

صدق الله العظيم (سورة الأعراف الأية ٤٣) To my parents,
Brother,
dearest uncles,
family and my
! friends.

1 1111 1 11 11 111 1

ļ

<u>Acknowledgment</u> !

I would like to express my deep gratitude and Thanks to Prof. Dr. Abdel -Gawad Rabia, Faculty of Science, Ain Shams University and Prof. Dr. Eglal Remoan Soia, Faculty of Science, Ain Shams University for their interest, and deep concern in this work.

Deepest thanks and sincere gratitude to Prof. Dr. Mohammed Mansour Abdel-Aziz Prof. Dr. of Radiation Chem., National Center for Radiation Research Technology (NCRRT), Atomic Energy Authority, for suggesting, planning the point of research, his eminent supervision, and valuable discussion. Also, for his encouragement and support throughout this work.

My special gratitude and thanks to associate prof. Dr. Hani Amer, for his Facilities provided, and discussion.

My deep thanks are also extended to Head and all staff members of Radiation chemistry Department, NCRRT, for their help, technical assistance and encouragement.

My appreciation and gratitude go to my father, may God bless his soul, and my mother, brother and all members of my dear family, for their loving support, continuous backing, prayers all through my life, and understanding during the tiring period in which this work was accomplished.

!

CONTENTS

No.		Page
	Contents	Ĭ
	List of figures	IV
	List of tables	VI
	Abstract	X
	Aim of work	XI
	CHAPTER 1	1
	INTRODUCTION	
I.	Types of Emissions	2
1.	Ionizing radiation	3
1.1.	Types of ionizing radiation	4
1.1.1.	Gamma Emissions:	5
1.1.2.	The Fundamental Law of Gamma-Ray Attenuation	7
1.2.	Interaction of Radiation with Matter	10
1.2. 1.	Interactions of Alpha Particles	11
1.2. 2.		12
1.2.3.	Gamma-Ray Interactions with Matter	13
1.2. 3. I.	The Photoelectric Effect	13
1.2. 3. II	. The Compton Effect	16
1.2. 3. II	I. Pair Production	18
1.3.	Quantities and units used for radiation	21
1.4.	Types of radiation exposure	23
1.4.1.		23
1.4.2	Methods for Reducing External Exposure	24
1.4.2. I.	Time	24
	I. Decay	24
	II. Distance	25
	V. Shielding:	26
	_	28
1.4.3.	1	32
1.5	Radiation Chemistry of Polymers	32

CHAPTER 2	37
LITERATURE REVIEW	
CHAPTER 3	54
MATERIALS AND EXPERMENTAL	
TECHINQUES	
3.1. Materials	54
a- Raw materials:	54
b- Fillers	55
c- Additives	56
d- Monomers	58
e- Solvent	60
3.2. Experimental Techniques	61
a- Mixing	61
b- Preparation of samples	61
c- Irradiation procedure:	63
3.3. Measurements:	68
3.3.1. Gamma ray attenuation coefficients measurement	68
3.3.2. Mechanical properties	70
3.3.3. Physico-chemical measurements	71
CHAPTER 4	
RESULTS AND DISCUSSION	
RESULTS AND DISCUSSION	
3.1. Attenuation coefficient of γ -rays in SBR composite	
3.1.1. Testing of different types of SBR rubber as shielding	73
materials.	74
	75
3.1.2. The linear attenuation coefficient for SBR-1502	75
formulations containing different types of monomers	
3.1.3- The linear attenuation coefficient for SBR-1502	70
formulations containing different concentrations	78
of lead oxide	

3.2. Mechanical properties	83
3.2.1. Effect of SBR type on the mechanical properties of the composites:	83
3.2.2-Effect of different monomers on mechanical properties	84
3.2.3- mechanical properties of cured samples without sulfur	90
3.2.4. Effect of different concentrations of red lead oxide on mechanical properties	93
3.2.5. The effect of irradiation doses on the mechanical properties of the samples contains different concentration of lead oxide.	99
3.2.6. The effect of high irradiation doses on the hardness of samples containing different concentration of lead oxide.3.3. Physical properties	102
3.3.1. Physical properties of SBR formulations containing different monomers.	105 105
3.3.2. Physical properties of SBR formulations containing different concentrations of lead oxide.	111
SUMMARY	114
CONCLUSIONS	118
REFERENCES	120
ARABIC SUMMARY	120

List of Figures

Pages

Fig. 1.1: the electromagnetic spectrum.	6
Fig. 1.2: Transmission of gamma rays through lead absorbers.	10
Fig 1.3: A schematic representation of the photoelectric absorption process.	14
Fig. 1.4: Linear attenuation coefficient of NaI showing Contributions from photoelectric absorption, Common scattering and pair production.	16
Fig. 1.5: A schematic representation of Compton scattering.	17
Fig. 1.6: A schematic representation of pair production.	20
Fig. 1.7: Decay of radiation field after shutdown	26
Fig. 2.1 : Schematic Set-up of Gamma Ray Spectrometer for use in Gamma Spectrometry	70
Fig. 3.1: The linear attenuation coefficient of the SBR/lead oxide composites as a function of the lead oxide concentration	81
Fig. 3.2: The relation between the T.S and the irradiation dose for the SBR samples containing unmodified and modified lead oxide.	89

Fig. 3.3: The relation between the elongation and	
irradiation dose for the SBR samples containing	90
unmodified and modified lead oxide.	
Fig. 3.4: The relation between the T.S and the lead oxide	
content for the SBR / lead oxide composites irradiated to	96
different irradiation dose	
Fig. 3.5: The relation between the elongation and the lead	
oxide content for the SBR / lead oxide composites	97
irradiated to different irradiation doses.	
Fig. 3.6: The relation between soluble fraction and	
irradiation dose for the SBR samples containing	109
unmodified and modified lead oxide	
Fig. 3.7: The relation between the swelling and	
irradiation dose for the SBR samples containing	110
unmodified and modified lead oxide	

List of Tables

Pages

Table 2.1 : formulation of styrene butadiene rubbers: SBR1502, SBR70 and their blend.	64
Table 2.2: formulations of SBR1502 containing different types of monomer.	65
Table 2.3: formulations of SBR1502 containing lead oxide and their blend	66
Table 2.4: formulations of SBR1502 containing different concentrations of lead oxide.	67
Table 3.1 : The linear attenuation coefficient (μ) and the half value layer (HVL) for the different types SBR.	74
Table 3.2: The gamma rays linear attenuation coefficient μ (cm ⁻¹) value for SBR formulations containing different types of monomers and irradiated to different doses of γ -radiation.	76
Table 3.3: The HVL (cm) value for SBR formulations containing different types of monomers and irradiated to different doses of γ -radiation	77
Table 3.4: The linear attenuation coefficient (cm ⁻¹) for SBR-1502 formulations containing different concentration of lead oxide and irradiated to different.	79

Table 3.5: The HVL (cm) for SBR-1502	
formulations containing different concentration of	
lead oxide and irradiated to different doses of	80
gamma radiation	
Table 3.6: The tensile strength and the elongation	02
at break of the different SBR formulations.	83
Table 3.7: The tensile strength (MPa) of SBR-1502	
formulations containing different types of monomers	85
and irradiated to different doses of gamma radiation.	
Table 3.8: The elongation at break (%) of SBR-	
1502 formulations containing different types of	
monomers and irradiated to different doses of	86
gamma radiation.	
Table 3.9: The tensile strength (MPa) of the	
samples contains monomers in absence and present	92
of sulfur.	
Table 3.10: The elongations at break (%) of the	
samples contain monomers in absence and present	92
of sulfur.	
Table 3.11: The tensile strength (MPa) for SBR-	
1502 formulations containing different	
concentrations of red lead oxide and irradiated to	94
different doses of gamma radiation.	

Table 3.12: The elongation at break (%) for SBR-	
1502 formulations containing different	
concentrations of leads oxide and irradiated to	95
different doses of gamma radiation.	
Table 3.13: The tensile strength (MPa) for SBR-	
1502 formulations containing different	100
concentrations of lead oxide and irradiated to high	100
irradiation doses	
Table 3.14: The elongations at break (%) for SBR-	
1502 formulation containing different concentration	101
of lead oxide and irradiated to high irradiation dose.	101
Table 3.15: The shore A hardness for SBR-1502	
formulations contains different concentrations	103
of red lead oxide and irradiated to high irradiation	100
doses.	
Table 3.16: The shore D hardness for SBR-1502	
formulations containing different concentrations of	
red lead oxide and irradiated to high irradiation	104
doses.	
Table 3.17: The soluble fraction in toluene for SBR	
composites containing 300phr lead oxide and	
different types of monomer and irradiated to	107
different doses of gamma radiation	

Table 3.18: The swelling % in toluene for SBR composites containing 300phr lead oxide and different types of monomer and irradiated to different doses of gamma radiation	108
Table 3.19: The soluble fraction for SBR1502 formulation containing different concentrations of Lead oxide and irradiated to different doses of gamma irradiation.	112
Table 3.20: The swelling % in toluene for SBR1502 formulation containing different concentrations of lead oxide and irradiated to different doses of gamma radiation.	113