List of Contents

Title	Page No.	
• Introduction	1	
• Aim of the Work	2	
• Anatomy and physiology of cardiac rhythm		
- Cardiac pacemaker and The conduction system	3	
- Physiology of cardiac rhythm	5	
- Regulation of heart rate	11	
- The Electrocardiogram	14	
• Cardiac dysrhythmias		
- Pathophysiology of Cardiac Dysrhythmias	17	
- Common Types of Cardiac Dysrhythmias	24	
- Causes of cardiac dysrhythmias during anesthesia	44	
Management of perioperative cardiac dysrhythmias		
- Detection of Cardiac Dysrhythmias during	55	
Anesthesia		
- Treatment of cardiac dysrhythmia	57	
- Treatment of common types of dysrhthmias during	90	
Anesthesia		
- Cardiac arrest in the OR	101	
• Summary	104	
• References	106	
• Arabic summary		

Lists of Abbreviations

Abbreviation	Meaning
$\mathcal{A}CC$: American college of cardiology
ALS	: Advanced Life Support
$\mathcal{A}\mathcal{F}$: Atrial fibrillation
АНА	: American heart association
AV node	: Atrioventricular node
САФ	: Coronary artery disease
СНВ	: Complete heart block
CNS	: Central nervous system
CPR	: Cardiopulmonary Resuscitation
$\mathcal{D}\mathcal{A}\mathcal{D}s$: Delayed afterdepolarizations
$\mathcal{D}C$: Direct current
EADs	: Early afterdepolarizations
$\mathcal{E}C\mathcal{G}$: Electrocardiogram
ETT	: Endotrachial Tube
$FD\mathcal{A}$: Food and Drug Administration
${\mathcal G}$: Electrical conductance
i or I	: Electrical currents
IV	: IntraVenous
\mathcal{LAFB}	: Left Anterior Fascicular Block
LBBB	: Left bundle branch block
LMA	: Laryngeal mask airway

Lists of Abbreviations (Cont.)

Abbreviation	Meaning
\mathcal{MAT}	: Multifocal Atrial Tachycardia
$\mathcal{M}I$: Myocardial infarction
$\mathcal{N}\!E$: Norepinephrine
OR	: Operation Room
PACs	: Premature atrial complexes
PEA	: Pulseless electrical activity
PJCs	: Premature Junctional complexes
PSVT	: Paroxysmal supraventricular tachycardia
PVCs	: Premature Ventricular complexes
RBBB	: Right bundle branch block
RF	: Radiofrequency
ROSC	: Return of spontaneous circulation
SA node	: Sinoatrial node
TE	: Transesophageal
VF	: Ventricular fibrillation
VT	: Ventricular tachycardia
WPW	: Wolf Parkinson White syndrome

List of Figures

Figure	Comment	Page
1	Anatomy of the conduction system for transmission of	3
	cardiac electrical impulses	
2	Action potential in different areas of the heart	6
3	Non-Pacemaker cell potentials	7
4	Predominant currents during phases of non-Pacemaker cell potentials	8
5	Pacemaker cell potentials	9
6	Effect of acetylcholine and norepinephrine (NE) on SA node action potentials	12
7	The components of ECG	14
8	Standard Limb Leads	15
9	Chest leads position	16
10	Early afterdepolarizations	18
11	Delayed afterdepolarizations	19
12	Parts of conductive system	21
13	Reentry pathways	22
14	Sinus tachycardia	25
15	Sinus Bradycardia	26
16	Sinus arrhythmia	26
17	Sinus arrest or pause	27
18	Paroxysmal supraventricular tachycardia	28
19	premature atrial complexes	29

List of Figures (cont.)

Figure	Comment	Page
20	Premature junctional complexes	29
21	Atrial Fibrillation	30
22	Atrial Flutter	31
23	Multifocal Atrial Tachycardia	32
24	Juncational Rhythm	32
25	Premature ventricular complexes	34
26	Ventricular tachycardia	35
27	Ventricular Fibrillation	36
28	Sinoatrial block	37
29	First Degree AV Block	38
30	Mobitz Type I 2nd Degree AV Block	38
31	Mobitz Type II 2nd Degree AV Block	39
32	3 rd Degree Complete AV Block	39
33	Left Bundle Branch Block	40
34	Right Bundle Branch Block	41
35	Left Anterior Fascicular Block	41
36	Wolff Parkinson White syndrome	43
37	Schematic diagram of the effects of Class IA agents	60
38	Schematic diagram of the effects of Class IB agents	66
39	Schematic diagram of the effects of Class IC agents	69
40	Schematic diagram of the effects of Class III agents	74
41	Schematic diagram of the effects of Class IV agents	80
42	Universal ALS Algorithm	98
43	Cardiac arrest in the OR. A comprehensive algorithm	103

List of Tables

Table	Contents	Page
1	Intracellular and extracellular ion concentrations in cardiac muscle	5
2	ECG Waves and Intervals	14
3	Vaughan Williams classification of Anti-arrhythmic drugs	58

Dealing With Cardiac Dysrhythmias In Relation To Anesthesia

Essay

Submitted for Partial Fulfillment of Master Degree in **Anesthesiology**

By

Mohamed Alaa El Din Abd El Moneem El Hadidy M.B.B.Ch, Faculty of Medicine, Ain Shams University

Supervised by

Professor doctor / Amir Ibrahim Mohamed Salah

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Doctor / Alfred Maurice Said Boctor

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Doctor / Mahmoud Hassan Mohamed Hassan

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Amir Ibrahim Mohamed Salah** Professor of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and great effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I am also indebted to **Dr. Alfred Maurice Said Boctor** Assistant professor of anesthesia and intensive care, faculty of medicine, Ain Shams University for his guidance, continuous assistance and sincere supervision of this work.

I would like also to express my sincere appreciation and gratitude to **Dr. Mahmoud Hassan Mohamed Hassan**, lecturer of anesthesia and intensive care, faculty of medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

Last but not least, I want to thank my wife and my family, whom without their sincere emotional support, pushing me forward, this work would not have ever been completed.

التعامل مع عدم انتظام ضربات القلب وعلاقته بالتخدير

توطئه للحصول على درجة الماجستير في التخدير

رسالة مقدمه من الطبيب / محمد علاء الدين عبد المنعم الحديدي

تحت إشراف الأستاذ الدكتور/ أمير إبراهيم محمد صلاح

أستاذ التخدير والرعاية المركزة كلية الطب _ جامعة عين شمس

الدكتور/ ألفريد موريس سعيد بقطر أستاذ مساعد التخدير و الرعاية المركزة كلية الطب – جامعة عين شمس

الدكتور / محمود حسن محمد حسن مدرس التخدير والرعاية المركزة كلية الطب جامعة عين شمس

كلية الطب جامعة عين شمس ٢٠١٠

الملخص العربي

يتكون نظام التوصيل الكهربائي للقلب من مجموعة من الخلايا القلبية عالية التخصص قادرة على توليد وتوصيل الإشارات الكهربائية خلال عضلة القلب.

قد يحدث عدم انتظام ضربات القلب نتيجة لخلل في تكوين النبضات أو خلل في توصيلها أو كلاهما معاً. وعادة ما يقسم عدم انتظام ضربات القلب إلى اضطرابات في معدل النبض واضطرابات في التوصيل.

هناك عديد من العوامل التي قد تسبب عدم انتظام ضربات القلب مثل العقاقير المستخدمة في التخدير وأثناء العملية التخديرية مثل أثناء تركيب الأنبوبة الحنجرية وجهاز الوريد المركزي. أيضاً قد يحدث عدم انتظام ضربات القلب نتيجة الخطوات الجراحية ونتيجة لنقص نسبة الأكسجين في الدم أو لوجود أمراض سابقة في عضلة القلب.

التعامل مع عدم انتظام ضربات القلب يشمل تشخيص هذه الاضطرابات عن طريق رسام القلب الكهربائي وعلاجها. وعلاج عدم انتظام ضربات القلب يشتمل على العلاج بالعقاقير والعلاج بالصدمات الكهربائية.

وحيث أن عدم انتظام ضربات القلب قد يؤثر على الوظائف الحيوية مما قد يهدد حياة المريض، لذا تهدف هذه الدراسة إلى مساعدة طبيب التخدير على التعامل مع عدم انتظام ضربات القلب أثناء التخدير للوصول بالمريض لبر الأمان.

INTRODUCTION

Cardiac dysrhythmias are a term for a large and heterogeneous group of conditions in which there is abnormal cardiac electrical activity. Dysrhythmias are usually classified according to heart rate abnormalities and conduction abnormalities. Conduction abnormalities are classified according to site and degree of blockade (*Kass and Clancy* 2006).

The clinical significance of these dysrhythmias for the anesthesiologist depends on the effect they have on vital signs and the potential for their deterioration into a life threatening rhythm (*Hines and Marschall*, 2008).

Many types of cardiac dysrhythmia can occur during anesthesia, there are several major factors contributing to the development of these dysrhythmias during anesthesia as endotracheal intubation, anesthetic drugs, hypoxia, electrolytes disturbance, and other many causes. Correction and prevention of these causes can be the only required treatment (*Hines and Marschall*, 2008).

ECG remains the standard monitor of cardiac electrical activity during anesthesia and allows the anesthesiologist for early detection and management of cardiac dysrhythmias. (*Miller*, 2009).

Detection and management of cardiac dysrhythmias during anesthesia is very important and considered as a life saving for the patient so that the aim of this study is to discuss this problem to help the anesthesiologists to deal with it during their practice.

Introduction and Aim of the Work

Aim of the work

The purpose of this essay research is to discuss the normal physiology of the heart conduction, types, causes, classification, management and methods of dealing with cardiac dysrhythmias in relation to anesthesia.

Cardiac pacemaker and the conduction system

The conduction system of the heart is a set of very specialized cardiac cells that initiate and conduct electrical signals through the heart with precise coordination and great speed. Spontaneous depolarization is initiated in the pacemaker cells of the sinoatrial (SA) node (Figure 1). As the electrical impulse moves along the conduction system a wave of depolarization is propagated throughout the heart causing progressive contraction of cardiac muscle cells.

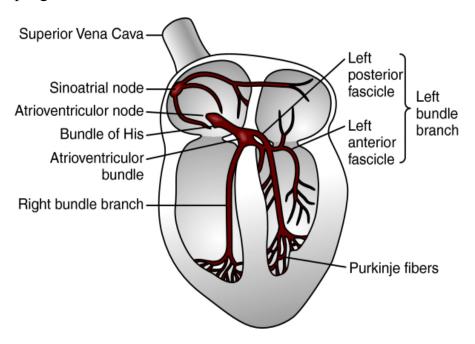


Figure (1): Anatomy of the conduction system for transmission of cardiac electrical impulses (*Hines and Marschall*, 2008).

The sinoatrial node:

The sinoatrial node is the primary site for impulse initiation, spontaneously discharging at a rate between 60 and 100 beats per minute. The SA node is located at the junction of the superior vena cava and the right atrium. It is richly innervated by sympathetic and parasympathetic nerve endings (*Becker and Anderson*, 1976).

Spontaneously generated action potentials from pacemaker cells in the SA node pass through the atrium via anterior, middle and posterior internodal tracks to the AV node. Impulses also pass from pacemaker cell to cell within the atrium via gap junctions (*Becker and Anderson*, 1976).

The atrioventricular node (The AV node):

The AV node is located in the septal wall of the right atrium, anterior to the coronary sinus and above the insertion of the septal leaflet of the tricuspid valve (*Anderson et al.*, 1975).

The AV node, like the SA node, is innervated by parasympathetic and sympathetic nerves. The AV node slows the conduction velocity of the electrical impulse, which allows time for atrial contraction, to contribute additional volume to the ventricle in late diastole. This volume contributes an additional 20% or so to cardiac output. After a brief slowing of the electrical impulse at the AV node, the impulse continues down the conduction tract along the bundle of His. The bundle of His quickly divides into right and the left bundles within the interventricular septum (Figure 1) (*Anderson et al.*, 1975).

The AV node gives rise to the AV bundle (bundle of His), the AV bundle passes through a fibrous opening into the interventricular septum and divides into the right and left bundle, The right bundle supplies the right ventricle. The left bundle further divides within the interventricular septum into anterior superior and posterior inferior divisions to supply the left ventricle; these bundles continue to divide to form the Purkinje fibers (*Anderson et al.*, 1975).