Validity of Spirometric measurements to evaluate COPD

Thesis

Submitted in partial fulfillment of the requirements for the Master's Degree in chest Diseases

By Ibrahim Ashry Ahmed

M.B., B.Ch, Faculty of Medicine El-Minia University

Supervised by

Dr. khaled Eid Sobhy

Prof. of Chest Disease, Faculty of Medicine Cairo University

Dr. Mohamed Abd El-Hakim El-Nady

Assist. Prof. of chest disease Faculty of medicine Cairo University

Faculty of Medicine Cairo University 2009

Abstract

This study was done on 300 persons aim to evaluate the different spirometric measure measurements In diagnosis COPD clinical examination and spirometry was done to every subjects in the study to diagnosis and staging of COPD .The study conclude that FEF₂₅₋₇₅ is more sensitive in early detection of COPD and can be used in staging of Copd

Key Words:

(COPD, spirometry, spirmetric measurements COPD guidelines- GOLD guidelines - AST/ERS guidelines - BST guidelines)

Acknowledgement

First and foremost I'm so thanks to my God the most merciful and beneficent and for making this work possible and granting me with the best teachers, family, friends and colleagues.

It is a great honor to me to take this opportunity to express my sincere appreciation and my deep respect to Dr. khaled Eid Sobhy, professor of chest disease, Faculty of Medicine, Cairo University, for his full support, careful supervision and for his deep insight that always found solutions when problems face me. Also, I am very grateful to his valuable advices, generous helps and encouragement throughout the study that are beyond acknowledgement.

I wish to express my deep respect to **Dr. Mohamed Abd El- Hakim El-Nady**, assistant professor of chest disease, Cairo University, for his great help and effort to make this work possible and for his very creative criticism. I was honored to work with him.

Furthermore, I would like to convey my special thanks to all members and subjects share in the study, for their kind cooperation.

Ibrahim El-Ashry

Contents

Introduction	1
Aim of the study	3
Review of literature	4
Chronic obstructive pulmonary disease	5
Nomenclature of COPD	5
Natural history of COPD	7
Pathophysiology of COPD	10
Spirometry	12
Measurements of ventilatory function	15
Normal predicted values for ventilatory function	17
Clinical assessment of COPD	18
Medical history	19
Physical examination	20
Functional assessment of COPD	21
Spirometric assessment of COPD	26
Diffusion capacity	26
Peak expiratory flow rate	27
Arterial blood gas	27
Exercise testing	28
Respiratory muscle function test	29
Radiological assessment of COPD	29
Chest X ray	29
Computed tomography	30
Laboratory assessment of COPD	30
Alpha-1 antitrypsin deficiency screening	30
Sputum	31
Bronchial biopsies	31
Pulmonary hiomakers	32

C-reactive protein	33
Small airways obstructive syndrome	33
A comparison of tests for detecting COPD	36
Minimizing misclassification of COPD	38
National and international guidelines on COPD	40
Spirometric staging of COPD in GOLD guideline	42
Spirometric staging of COPD in AST guideline	43
Spirometric staging of COPD in BTS guideline	44
Spirometric staging of COPD in other guidelines	44
South African Thoracic Society guideline	44
Australian and New Zealand guideline	46
Material and methods	48
Study population	48
Study groups	48
Methods	49
Spirometry	50
Study hypothesis	53
Statistical analysis	54
Results	55
Discussion	72
Summary	77
Conclusions	79
Recommendations	80
References	81
Annex	92
Arabic summary	97

List of tables

Table (A)	
Spirometic classification of COPD in AST/ERS guidelines	42
Table (B)	
Spirometric classification of COPD in BTS guideline	43
Table (C)	
Spirometic classification of COPD in South Africa guideline	45
Table (D)	
Spirometric classification of COPD in Australian and	
New Zealand Guidelines	47
Table (1)	
Classification of the study population	55
Table (2)	
Characteristics of the study groups	56
Table (3)	
Distribution of the Study groups according to smoking habits	57
Table (4)	
Distribution of the COPD group according to FEV ₁ measurement	58
Table (5)	
Normal values of FVC % in normal non smokers group	59
Table (6)	
Normal values of FEV ₁ % in normal nonsmokers group	60
Table (7)	
Normal values of FEV ₁ /FVC % in normal nonsmokers group	61
Table (8)	
Normal values of FEF 25-75 % in normal nonsmokers group	62
Table (9)	
Mean and standard deviation of Spirometric measurements between	
nonsmokers group and asymptomatic smokers group	63

Table (10)	
Correlation between FEF ₂₅₋₇₅ % and FVC %, FEV ₁ % and	
FEV ₁ /FVC % in normal nonsmokers group	64
Table (11)	
Correlation between FEV ₁ % and FEF ₂₅₋₇₅ % in smokers groups	
(asymptomatic smokers + COPD smokers)	65
Table (12)	
Correlation between FVC% and FEF ₂₅₋₇₅ % in smokers groups	
(asymptomatic smokers + COPD smokers)	66
Table (13)	
Correlation between staging by FEV ₁ % and FEF ₂₅₋₇₅ % in smokers	
groups (asymptomatic and COPD smokers)	67
Table (14)	
Staging of the smokers groups (asymptomatic smokers + COPD	
smokers) according to FEF ₂₅₋₇₅ % parameter	68
Table (15)	
Staging of the smokers groups (asymptomatic smokers + COPD	
smokers) according to FEV ₁ % parameter	69
Table (16)	
Comparison between distribution of cases in different stages	
according to FEV ₁ % and FEF ₂₅₋₇₅ % in smokers groups	70
Table (17)	70
Description of the spirometric measurements in cases consider	
obstructed by FEF ₂₅₋₇₅ % but normal by FEV ₁ % in asymptomatic	
smokers group	71

List of figures

Figure (A) Normal volume-time curve	10
Figure (B) Flow-Volume loop.	11
Figure (C) Volume-time curve	22
Figure (D) Flow volume curve in peripheral airways obstruction	24
Figure (E) Flow volume curves in central airways obstruction	24
Figure (F) The static lung volumes.	25
Figure (G) Spirometer used in the study (Vitalograph-alpha Model No. 6000)	51
Figure (1) Classification of the study population	55
Figure (2) Distribution of the Study groups according to smoking habits	57
Figure (3) Distribution of the COPD groups according to FEV ₁ measurement	58
Figure (4) Normal distribution curve for FVC % values in normal non smokers group.	59
Figure (5) Normal distribution curve for FEV ₁ % values in non COPD smokers group.	60
Figure (6) Normal distribution curve for FEV ₁ /FVC % values in normal nonsmokers group.	61
Figure (7) Normal distribution curve for FEF ₂₅₋₇₅ % values in normal nonsmokers group	62

List of abbreviation

ATS = American Thoracic Society

BAL = Broncho-alveolar lavage

BTS = British Thoracic Society

Ciba = Central Indiana Bicycling Association

COPD = Chronic obstructive pulmonary disease

CRP = C - reactive protein

ERS = European Respiratory Society

 FEV_1 = Forced Expiratory Volume in 1 Second

FEV = forced expiratory volume

FEV1 / FVC = ratio of FEV1 to FVC

 FEF_{25-75} % = forced expiratory flow at 25 – 75 %

FVC = Forced vital capacity

GOLD = Global Initiative for Chronic Obstructive Lung Disease

LLN = Lower limit of the normal range

MVV = maximal voluntary ventilation

PaO2 = partial pressure of oxygen

PaCO2 = partial pressure of carbon dioxide

PEF = peak expiratory flow

PFT = Pulmonary Function Test

PEFR = peak expiratory flow rate

RV = residual volume

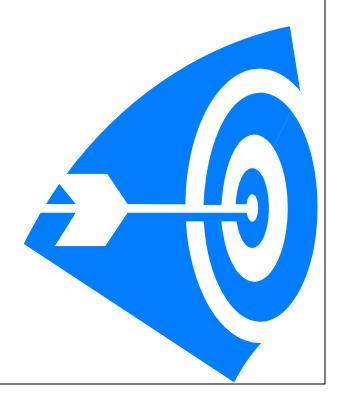
SAOS = small airways obstructive syndrome

SI = smoking index

SPSS = statistical package for social sciences

SVC = slow vital capacity

TV = tidal volume


LC = total lung capacity

TSANZ = Thoracic Society of Australia and New Zealand

VC = vital capacity

Introduction

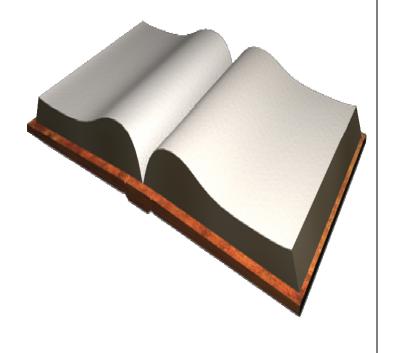
: Him of the study

Introduction

Chronic obstructive pulmonary disease (COPD) remains a major public health problem. It is the fourth leading cause of chronic morbidity and mortality in the United States, and is projected to rank fifth in 2020 in burden of disease worldwide. According to a study published by the World Bank/World Health Organization Yet, COPD remains relatively unknown or ignored by the public as well as public health and government officials. (Gulsvik, 2001)

COPD is a heterogeneous disease with various clinical presentations. The basic abnormality in all patients with COPD is airflow limitation that is not fully reversible. It is primarily caused by cigarette smoking. And many people suffer from this disease for years and die prematurely of it or its complications. (Anto, et al, 2001)

The diagnosis of COPD should be considered in any patient who has the following: symptoms of cough; sputum production; dyspnoea; or history of exposure to risk factors for the disease. The diagnosis and early detection of COPD require spirometry and the early diagnosis allows effective management and treatment. (Dewan et al., 2000)


Spirometry should be obtained in all persons with the following history: (a) exposure to cigarettes smoking and/or exposure to environmental or occupational pollutants. (b) Presence of cough, sputum production or dyspnoea. Multiple measurements are obtained from this maneuver. Those most commonly used for interpretation are (1) forced expiratory volume after 1 second [FEV1], (2) forced vital capacity [FVC], and (3) forced expiratory flow at 25%-75% of maximal lung volume [FEF25-75]. They are expressed as percentages of what is predicted for normal lung function, depending on the variables of height, age, race, and sex. (Ferrer et al., 1999)

Guidelines on diagnosis and treatment of COPD have been published during the last years. The most important are edited by the European Respiratory Society (ERS), The American Thoracic Society (ATS), both form 1995, The British Thoracic Society (BTS) form 1997, and the Global Initiative for Chronic Obstructive Lung Disease (GOLD) form 2000 with annual update. However, the spirometic criteria for COPD differ considerably between the guidelines. (Clotet et al., 2004)

Aim of the study

• The aim of this study is to evaluate validity of the different spirometric measurements in diagnosis and staging of COPD.

