Role of Estrogen and Matrix Metalloproteinase—1 in Skin Aging and Photoaging

Thesis

Submitted for partial fulfillment of Master degree in Dermatology, Venereology and Anderology

By
Gehan Fetouh El Mowafy
(M.B, B.CH.)

Under Supervision of

Professor Dr. Hanan Mohamed El Kahky

Professor of Dermatology, Venerology and Andrology Faculty of Medicine, Ain Shams University

Professor Dr. Sahar Saad El Din Zaki

Professor of Pathology Faculty of Medicine, Ain Shams University

Dr. Enas Attia Saad El Din Attia

Lecturer of Dermatology, Venerology and Andrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2010

بسم الله الرحمن الرحيم

صدق الله العظيم سورة طه الأية رقم 14

Acknowledgement

First and for most thanks to ALLAH the most merciful, gracious and compassionate. To ALLAH everything in life is resumed.

I would like to express my sincere gratitude and deep appreciation to Prof. Dr. Hanan Mohmed EL Kahky, Professor of Dermatology, Venereology and Androlgy, Faculty of Medicine-Ain Shams University, for her continuous scientific guidance, enriching me with her vast experience, unlimited help and full provision of facilities.

I am greatly indepted to Prof. Dr. Sahar Saad EL Din Zaki, Professor of Pathology-Faculty of Medicine-Ain Shams University, for her scientific guidance, helpful cooperation, effective advice and in exhaustible patience throughout the entire work.

I am delighted to express my deep gratitude and sincere thanks to Dr. Enas Attia Saad EL Din Attia, Lecturer of Dermataology, Venereology and Anderology-Faculty of Medicine-Ain Shams University, for her great help, experienced guidance throughout the period of the work, Kind supervison, and the precious time and effort.

I would like to express my deepest gratitude to my Parents, my Brothers for their never ending support throughout all steps of my life.

Gehan (

Contents

	Page
List of abbreviations	I
List of figures	II
List of tables	V
Introduction and Aim of the work	1
Review of literature:	
Chapter 1: Skin aging and photoaging	5
I. Intrinsic aging	5 5 5
 Factors affecting intrinsic aging 	5
 Pathomachanisms of endogenous skin aging 	6
 Clinical picture of intrinsically aged skin 	9
 Histologic characteristics of endogenously aged 	
skin	12
II. Extrinsic aging	15
 Factors affecting extrinsic skin aging 	15
 Mechanism of skin photoaging 	16
 Clinical picture of photoaged skin 	20
 Histologic characteristics of exogenously aged 	
skin	24
III. Similarities and dissimilarities between	
chronological aging and photoaging	28
IV. Age associated decline in skin functions.	31
Chapter II Role of estrogen in skin aging and	
photoaging	34
	34
 Synthesis, transport and metabolism of estrogen 	39
 Regulation of estrogen synthesis 	41
Age related estrogen levels	42
 Mechanism of estrogen action in the skin 	45
- Dialogy of astrogons in skin	

 Hormone replacement therapy and topical 	51
estrogen treatment	56
 Effects of phytoestrogenic SERMs on skin aging 	57
 Effects of selective ER modulators on skin aging 	
Chapter III: Role of MMP-1 in skin aging and	59
photoaging	
Classification of MMPs	59
■ Domain structure of MMPs	60
 Biological and pathological roles of MMPS 	61
 Regulation of MMPs activation and proteolytic 	
activity	62
Matrix metalloproteinase-1	64
• Synthesis and activation of MMP-1	64
• Structure of MMP-1	64
■ Regulation of MMP-1	66
 Biological function (substrate specificity) 	67
 Biological and pathological role of MMP-1 in 	
skin aging and photoaging	68
 Estrogen and MMP-1 in skin aging and 	
photoaging	72
Subjects and Methods	75
Results	79
Discussion	107
Summary and conclusion	114
References	117
Arabic summary	

List of Abbreviations

AP-1	Activator protein-1
APCs	Antigen presenting cells
ATP	Adenosine triphosphate
BCC	Basal cell carcinoma
bFGF	Basic fibroblast growth factor
Cdk	Cyclin dependent kinases
CyR61	Cysteine rich growth regulatory factor
DEJ	Dermo-epidermal junction
DHEA	Dehydroepiandrostrone
ECM	Extracellular matrix
EGF	Epidermal growth factor
ER	Estrogen receptor
FSH	Follicle stimulating hormone
GAGs	Glycosaminoglycans
GM-CSF	Granulocyte macrophage colony stimulating factor Hematoxylin and Eosin
H&E	Hematoxylin and Eosin
HRT	Hormone replacement therapy
HSD	Hydroxysteroid dehydrogenase
IGF	Insulin-like growth factor
IGFBP	Insulin-growth factor binding protein
II.	Interleukin
LCs LDL	Langerhans cells
LDL	Low density lipoproteins
LH	Luteinzing hormone
MED	Minimal erythema dose
MIF	Macrophage migration inhibitory factor
MMPs	Matrix metalloproteinases
mt DNA	Mitochondrial DNA
MT-MMPs	Membrane type MMPs
NF-kβ PDGF	Nuclear factor kβ
PDGF	Platelet derived growth factor
ROS	Reactive oxygen species
SCC	Squamous cell carcinoma
SERMs	Selective ER modulators
TGF	Transforming growth factor
TIMPs	Tissue inhibitors of matrix metalloproteinases
TNF α	Tumour necrosis factor α
UV	Ultraviolet
VEGF	Vascular endothelial growth factor

List of Figures

Figure	List of Figures	Dane
Figure		Page
Fig.1	Expression wrinkles.	10
Fig.2	Gravitaional wrinkles.	11
Fig.3	Model depicting solar UV irradiation damage to	17
	skin connective tissue.	
Fig.4	Elastotic wrinkles.	22
Fig.5	Atrophic response to phtodamage.	22
Fig.6	Solar lentigines.	23
Fig.7	Principal pathway of estrogen biosynthesis in	37
	ovary.	
Fig.8	Ovarian synthesis, transport, and metabolism of	39
_	estrogens.	
Fig.9	Feedback control of anterior pituitary and ovary.	40
Fig.10	Diagrammatic representation of the effect of	47
	estrogen hormone levels on cutaneous wound	
	healing.	
Fig.11	Structural classification of human MMPs based on	60
	their domain organization.	
Fig 12	Classification of MMPs according to their domain	61
	structure.	
Fig.13	The three-dimensional structure of human MMP-1.	65
Fig.14	Anti-skin aging effect of topical 17-β estradiol in	74
	aged human skin in vivo.	
Fig. 15	Thickened epidermis, hypermelanosis and solar	80
	elastosis in sun-exposed premenopausal skin.	
Fig. 16	Hypermelanosis, fragmented collagen and solar elastosis	81
	in sun-exposed premenopausal skin.	
Fig.17	Thickened epidermis, hypermelanosis and solar elastosis	82
	in sun-exposed premenopausal skin.	
Fig. 18	Fragmented collagen in sun-exposed	83
	premenopausal skin.	
Fig. 19	Thin epidermis, hypomelanosis and flat dermoepidermal	84
	junction in sun-protected postmenopausal skin.	
Fig. 20	Strong positive nuclear staining of epidermal	85
	keratinocytes, dermal fibroblast and hair follicle in sun-	
	exposed premenopausal skin.	

Fig. 21	Strong positive nuclear staining of epidermal keratinocytes in sun-exposed premenopausal skin.	86
Fig. 22	Moderate positive nuclear staining of epidermal keratinocytes and dermal fibroblast in sun-protected premenopausal skin.	86
Fig. 23	Moderate positive nuclear staining of epidermal keratinocytes in sun-exposed postmenopausal skin.	87
Fig. 24	Weak positive nuclear staining of epidermal keratinocytes in sun-protected postmenopausal skin.	88
Fig.25	Negative staining of epidermal keratinocytes in sun- protected postmenopausal skin.	88
Fig. 26	Moderate positive cytoplasmic staining of epidermal keratinocytes and dermal matrix in sun-exposed premenopausal skin.	90
Fig. 27	Weak positive cytoplasmic staining of epidermal keratinocytes and dermal matrix in sun-protected premenopausal skin.	90
Fig. 28	Negative staining of epidermal keratinocytes and dermal matrix in sun-protected premenopausal skin.	91
Fig. 29	Strong positive cytoplasmic staining of epidermal keratinocytes and dermal collagen in sun-exposed postmenopausal skin.	92
Fig. 30	ERβ expression in the skin of premenopausal and postmenopusal women.	95
Fig 31	Premenopausal woman with type I Glogau photoaging classification.	96
Fig. 32	Premenopausal woman with type II Glogau photoaging classification.	97
Fig. 33	Premenopausal woman with type II Glogau photoaging classification.	98
Fig. 34	The expression of MMP-1 in the skin of premenopausal and postmenopausal women.	101
Fig. 35	Postmenopausal woman with type III Glogau photoaging classification.	102
Fig. 36	Postmenopausal woman with type III Glogau photoaging classification.	103
Fig. 37	Positive correlation between the expression of ERB and the level of collagen in the skin of premenopausal and postmenopausal women.	104

T-1 00		10=
Fig. 38	Negative correlation between the expression of	105
	MMP-1 and the level of collagen in the skin of	
	premenopausal and postmenopausal women.	
Fig. 39	Negative correlation between the expression of	105
	ERβ and MMP-1 in sun-exposed skin of	
	premenopausal and postmenopausal women.	
Fig. 40	Negative correlation between the expression of	106
	ERβ and MMP-1 in sun-protected skin of	
	premenopausal and postmenopausal women.	
1	1	

List of tables

Table		Page
Table 1	Characteristics of different skin phototypes.	21
Table 2	Glogau's photoaging classification.	22
Table 3	The histologic abnormalities underlying	25
	photoaged phenotype.	
Table 4	Classification of photoaging of premenopausal	80
	and postmenopausal groups according to	
	Glogou's photoaging classification.	
Table 5	H&E skin changes of group I (A)	81
Table 6	H&E findings of group II (A).	83
Table 7	H&E skin changes of group II (B).	84
Table 8	The results of ERβ immunostaining in the skin	89
	of premenopausal and postmenopausal women.	
Table 9	The results of MMP-1 immunostaining in the	92
	skin of premenopausal and postmenopausal	
	women.	
Table 10	Comparison between ERβ expression in sun-	93
	exposed versus sun-protected skin of	
	premenopausal and postmenopusal women.	
Table 11	Comparison between the expression of ER β in	94
	both sun-exposed and sun-protected skin of	
	premenopausal versus postmenopausal women.	
Table 12	Comparison between the expression of MMP-1	99
	in sun-exposed versus sun-protected skin of	
	premenopausal and postmenopausal women.	
Table 13	Comparison between the expression of MMP-1	100
	in both sun-exposed and sun-protected skin of	
	premenopausal versus postmenopausal women.	

Protogol

Role of Estrogen and Matrix Metalloproteinase–1 in Skin Aging and Photoaging

Protocol for Thesis

Submitted for partial fulfillment of

Master degree in Dermatology, Venereology and

Anderology

By

Gehan Fetouh El Mowafy (M.B, B.CH.)

Under Supervision of

Professor Dr. Hanan Mohamed El Kahky Professor of Dermatology, Venerology and Andrology Faculty of Medicine, Ain Shams University

Professor Dr. Sahar Saad El Din Ahmed Zaki Professor of Pathology Faculty of Medicine, Ain Shams University

Dr. Enas Attia Saad El Din Attia Lecturer of Dermatology , Venerology and Andrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2008

Role of Estrogen and Matrix Metalloproteinase–1 in Skin Aging and Photoaging

Introduction

Human skin, like all other body organs undergoes chronological aging. In addition, unlike other organs, skin is exposed to ultraviolet (UV) irradiation and, therefore, undergoes aging as a consequence of sun exposures (photoaging) (*Fisher et al.*, 2002).

Clinically, naturally aged skin is smooth, pale and finely wrinkled. In contrast; photoaged skin is coarsely wrinkled and associated with pigmentation and telangiectesia (*Gilchrest*, 1989). Alteration in collagen, which is the major structural component of skin, have been suggested to be the cause of clinical changes, such as skin wrinkling and loss of elasticity, observed in naturally aged and photoaged skin (*Fisher et al.*, 1997).

UV irradiation activates growth factors and cytokine receptors on the surface of keratinocytes and fibroblasts. Activated receptors stimulate signal transduction cascades that induce the transcription factor; Activator Protein1 (AP-1), which stimulates transcription of matrix metalloproteinases (MMPs) secreted from keratinocytes and fibroblasts (*Ullrich and Schlessinger*, 1990).

MMPs are a family of zinc dependant endoproteinases that has pivotal role in the dynamic remodeling of extracellular matrix (ECM). MMP-1 is the most abundant MMPs and is produced by fibroblasts. It initiates cleavage of fibrillar collagen at single site within its central triple helix. Once cleaved by MMP-1, collagen can be further degraded by elevated levels of MMP-3 and MMP-9. Thus, MMPs mediate collagen damage in photoaged skin (*Sternlicht and Werb*, 2001).

Estrogen and estrogen like compounds work to reverse the effects of both intrinsic aging and photoaging in the skin, by functioning as both antioxidants and signaling molecules (*Kang et al., 2003*). They mediate their activity by interaction and activation of specific intracellular receptor proteins; Estrogen Receptors (ERs). There are two types of estrogen receptors: $ER\alpha$ and $ER\beta$.

ER β were found to show strong expression in the epidermis, dermal fibroblasts, blood vessels, and hair follicles of male and female adult scalp skin, but no specific staining of ER- α was observed (*Thornton et al.*, 2003; *Pelletier and Ren*, 2004).

Estrogens were found to increase the activity of transforming growth factor beta (TGF- β), which increases the production of collagen. On the other hand, they reduce the concentration of reactive oxygen species (ROS). ROS were found to increase signaling pathways that inhibit collagen production and also increase MMPs activity, resulting in a net result of decreased collagen content. Thus, a good part of the changes in collagen, seen in aging, were found to be associated with decreased level of estrogen (*Kang et al.*, 2003).

Aim of work

The aim of the work is to study the expression of ER β and MMP-1 in premenopausal and postmenopausal women, both in sun-exposed and sun-protected skin, to find out their role in skin aging and photoaging.

Subjects and Methods,

The study will include 20 female subjects comprising two groups:

- Group I: 10 premenopausal women
- Group II: 10 postmenopausal women

Both groups will be subjected to the following:

- History with emphasis on outdoor activities and smoking.
- Examination

- Skin biopsies: 2 skin biopsies will be taken from each subject, one from sun protected skin and one from sun exposed skin. Each biopsy will be processed and stained by :
- Hematoxylin and Eosin (H&E) for routine histopathological examination.
- Immunoperoxidase technique to study the expression of both $ER\beta$ and MMP1 by immunohistochemistry.

The study will include:

- Introduction and aim of the work.
- Review of literature.
- _ Subjects and Methods.
- Results.
- Discussion.
- _ Summary and Conclusions.
- References.
- _ Arabic Summary.

References

- Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S and Voorhees JJ: Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med. 1997; 337:1419-1428.
- Fisher GJ, Kang S, Varani J, Wan Y, Datta SC and Voorhees JJ: Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002; 138:1462-1470.
- Gilchrest BA: Skin aging and photoaging, an overview. J Am Acad Dermatol. 1989; 21:610-613.
- Kang S, Chung JH and Lee JH: Topical N-acetyl cysteine and genistein prevent ultraviolet light induced signaling that leads to photoaging in human skin in vivo. J Invest Dermatol. 2003; 120(5):835-41.
- Pelletier G and Ren L: Localization of Sex steroid receptors in human skin. Histo Histopathol. 2004; 19:629-638.