LONG TERM FOLLOW UP OF PERIPHERAL ARTERIAL INTERVENTION

Thesis

Submitted for Partial Fulfillment of MD Degree of Cardiology By

Ahmed Abdalla Mohamed Emam

MBBch, MSc

Under Supervision of

Professor Dr. Mohamed Ayman Saleh

Professor of Cardiology Faculty of Medicine – Ain Shams University

Professor Dr. Ahmed Abd EL-Rahman Sharaf El-Deen

Professor of Cardiology
Faculty of Medicine – Ain Shams University

Doctor. Hamdy Soliman Mahmoud

Consultant of Cardiology National heart institute

Doctor. Hani Mohamed Awadalla

Lecturer of Cardiology Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2010

النتائج المرتقبة طويلة المدى للعلاج التداخلي للشرايين الطرفية

رسالة توطئة للحصول على درجة الدكتوراة في القلب والأوعية الدموية

مقدمة من

الطبيب/ أحمد عبد الله محمد إمام ماجستير القلب والاوعية الدموية

تحت إشراف

الأستاذ الدكتور/ محمد أيمن صالح

أستاذ أمراض القلب والأوعية الدموية كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ أحمد عبد الرحمن شرف الدين

أستاذ أمراض القلب والأوعية الدموية كلية الطب – جامعة عين شمس

الدكتور/ حمدي سليمان محمود

إستشاري أمراض القلب والأوعية الدموية معهد القلب القومي

الدكتور/هاني محمد عوض الله

مدرس أمراض القلب والأوعية الدموية كلية الطب – جامعة عين شمس كلية الطب جامعة عين شمس جامعة عين شمس

2010

CONTENTS

	PAGE
Introduction;;	11
Aim of the work	14
Review of literature	15
Chapter one: Atherosclerosis pathophysiology and	l the
Role in Peripheral Vascular Disease	16
Blood vessels structure and function	17
Atherosclerosis	21
Chapter two: Peripheral Arterial Disease: Diagnos	is
and Management	46
Risk factors	48
Clinical features	52
Intermittent claudication	54
Critical limb ischemia	55
Diagnosis	56
Treatment	59
Specific drug therapy for PAD	62
Chapter three: Endovascular therapies for peripherarterial disease	
Patient Selection and Outcomes.	68

$\mathbf{Contents}_{(\mathbf{Cont.})}$

	PAGE
Aorto-iliac Disease	68
Common and Deep Femoral Artery Disease	75
SFA and Popliteal Artery Disease	78
Brachytherapy	81
Debulking Strategies.	83
Cryoplasty	84
Cutting-Balloon Angioplasty	85
Drug-Eluting Balloons and Stents	85
Covered Stents.	86
Tibial and Peroneal Artery Disease	88
Drug-Eluting Stents	90
Angiogenesis	91
Patients and methods	93
Methods of the study	95
Twelve months follow up	100
Data management and analysis	102
Results	103

$CONTENTS_{(CONT.)}$

	PAGE
Discussion	126
Conclusion.	142
Recommendation	144
References.	146
Summary	201
Arabic summary	207

LIST OF TABLES

TABLE NO. PAGE
Table 1. Classification of PAD: Fontaine's Stages and Rutherford's Categories55
Fable 2. Disease Severity and Ankle-Brachial Index (ABI) (Mayo clinic Vascular Laboratory Criteria57
Table 3. Modified TASC Morphological Classification of Iliac Lesions72
Fable 4. Modified TASC Morphological Classification of Femoral-popliteal Lesions79
Fable 5. Baseline characteristics of the patients and treated Lesions105
Гable 6. Immediate and in-hospital results107
Γable 7. Balloons and stents, numbers and size108
Fable 8. Factors affecting the immediate and in-hospital Mortality109
Table 9. Factors affecting the immediate and in-hospital Morbidity110
Fable 10. Diabetes mellitus and its relation with in hospital mortality and morbidity111
Table 11. One year follow up results113
Table 12. Factors affecting one year outcome results114
Fable 13. Relation between the single and bilateral LL Affection115
Fable 14: Comparison between the single and bilateral LL lesions116

LIST OF TABLES_(CONT.)

TABLE NO. P.	AGE
Table 15: Comparison between diabetics and non diabetic patients1	
Fable 16: Comparison between diabetics and non diabetic patients1	
Table 17: Relations of procedure success1	19
Fable 18: Comparison between procedure success and failure	120
Table 19: Relations of lower limb symptoms recurrence we different factors	
Table 20: Factors that influence recurrence of symptoms of year following the intervention	
Fable 19: Comparison and relations of different sites of lesions	124

LIST OF FIGURES

FIGURE NO.	PAGE
Figure. 1. Initiation of atherosclerosis	28
Figure. 2. Inflammation links classic risk factors to al cellular behavior within the arterial wall and se of inflammatory markers in the circulation	cretion
Figure. 3. Progression of atherosclerosis	33
Figure. 4. Thrombotic complication of atherosclerosi	s36
Figure 5. Risk of developing lower extremity peripher arterial disease	
Figure 6. Algorithm for evaluating patients in whom peripheral arterial disease is suspected	53
Figure 7. A, Distal aorta severe stenosis .B, after trea with balloon-expandable stent	
Figure 8. Baseline angiography of TASC D lesion	70
Figure 9. Left, Baseline angiography of tandem critics of the deep femoral (profunda femoris) arter Endovascular profundaplasty after balloon Angioplasty	y. Right,
Figure 10. Data from randomized trial of SFA lesions superiority for stent over balloon angioplas 1 year for maximal distance walked and AB	sty at
Figure 11. Kaplan–Meier plot of cumulative recurrence after femoro-popliteal balloon angioplasty compared with angioplasty with Brachythe showing no difference	erapy

LIST OF FIGURES_(CONT.)

FIGURE NO.	PAGE
Figure 12. A, Angiogram of a tibio-peronea B, Final angiogram after treatme balloon-expandable stent	ent with a coronary
Figure 13: Intervention success rate	106
Figure 14: One year follow up patients stat	te106

LIST OF ABBREVIATIONS

ABI = Ankle-brachial index.

ACC = American College of Cardiology

ACE = Angiotensin-converting enzyme.

ACS= Acute coronary syndromes.

AHA = American Heart Association.

Apo C-III= Apolipoprotein C-III.

CAPRIE = Clopidogrel versus Aspirin in Patients at Risk of Ischemic Events.

CFA=Common femoral artery.

CLEVER= Claudication: Exercise Versus Endoluminal Revascularization.

CLI = Critical limb ischemia

COPD = Chronic obstructive pulmonary disease

CTA = Computed tomographic angiography

DNA = Deoxyribonucleic acid.

DIC=Disseminated intra vascular coagulopathy.

DP =Dorsalis pedis.

FDA = Food and Drug Administration

HDL = High-density lipoprotein

HMG = Hydroxymethyl glutaryl.

IC= Intermittent claudication.

ICAM-1= Intercellular adhesion molecule-1

INR = International normalized ratio

LDL = Low-density lipoprotein

Lipoprotein (a)= Lp [a]

MI = Myocardial infarction

MRA = Magnetic resonance angiography.

NF- α =Tumor necrosis factor- α .

NF-κB=Nuclear factor-κB.

NO=Nitric oxide.

 $\mathbf{OR} = \mathbf{odds}$ ratio.

LIST OF ABBREVIATIONS (CONT.)

Ox-LDL= Oxidized LDL.

 \mathbf{P} = statistical significance

PAD = peripheral arterial disease.

PAI-1=plasminogen activator inhibitor-1.

PDGF =platelet-derived growth factor.

PPAR- α =Peroxisome proliferator-activated receptor- α .

PT= posterior tibial

PTA = percutaneous trans-luminal angioplasty.

PVD=Peripheral vascular disease.

SFA= Superficial femoral artery.

SMC=Smooth muscle cells.

Std. Deviation: Standard deviation.

TASC = Trans Atlantic Inter-Society Consensus Working Group.

TGF- β = Transforming growth factor- β

TIA = Transient ischemic attack.

TRLPs = Triglyceride-rich lipoproteins.

VCAM-1=Vascular cell adhesion molecule-1.

VLDL=Very low density lipoprotein.

Acknowledgement

First of all, thanks to **Allah** who granted me the ability to accomplish this work.

Words can never express my deepest gratitude and sincere appreciation to **Prof. Dr. Ayman saleh**, Professor of Cardiology, Faculty of Medicine, Ain Shams University, for his continuous encouragement, excellent guidance, powerful support, extreme patience and faithfully advice. I really had the honor of having his supervise for this work.

My deepest thanks, appreciation and sincerest gratitude to **Prof.Dr. Ahmed Abd El-Rahman**, professor of Cardiology, Faculty of Medicine, Ain Shams University, who spared no time and effort to provide me with her valuable instructions and his expert touches. his wise supervision gave me invaluable opportunity to benefit from his faithful guidance and continuous support.

My everlasting gratitude to **Dr.Hamdy Soliman**, consultant cardiologist, national heart institute, for his great help, continuous guidance and for offering me much of his time and effort. His extreme careful supervision and precise advices are more that I can express.

My ever tanks to **Dr.Hany Awad Allah**, assistant professor of Cardiology, Faculty of Medicine, Ain Shams University, for his always help, continuous advices and for giving me much of his time and effort.

Finally, my truthful affection and love to my parents, wife, SON who were, and will always be, by my side, all my life.

Introduction and Aim of the Work

Introduction

Peripheral arterial disease (PAD) is one manifestation of systemic atherosclerosis. The prevalence of PAD increases with the age of the population. ^{1,2}. It is important to remember the significant association of coincident coronary artery disease and cerebrovascular disease in these patients, because it represents the major cause of major morbidity and mortality in population.³.Remarkable technological **PAD** the advances in the past decade, along with patient preference, have shifted revascularization strategies from traditional open surgical approaches toward lower-morbidity endovascular percutaneous treatments. Catheter-based revascularization of the lower extremities was first performed by Charles Dotter⁴ and advanced by Andreas Gruentzig, who employed then newly developed inflatable balloon catheters that could dilate vascular stenosis.⁵. The availability of stents, more than any other advance, has fueled the growth of catheter-based procedures by improving the safety, durability, and predictability of percutaneous revascularization.

Endovascular therapy offers several distinct advantages over open surgical revascularization for selected lesions.^{6,7}.It is performed with local

anesthesia, which enables the treatment of patients who are at high risk for general anesthesia. The morbidity and mortality from catheter-based therapy is extremely low, especially compared with open surgical revascularization. After successful percutaneous revascularization, patients are ambulatory on the day of treatment, and unlike after vascular surgery, they can often return to normal activity within 24 to 48 hours of an uncomplicated procedure. Endovascular therapies generally do not preclude or alter subsequent surgery and may be repeated if necessary.

Multiple including specialties, interventional cardiology, have contributed to the advancement of the field of peripheral vascular intervention over the past several decades.⁸. The recognition of an unmet need for a trained cadre of clinicians to care for patients with PAD prompted the development of a core (COCATS-11) curriculum document and multispecialty societal competency statement. ¹⁰. The American Heart Association and American College of Cardiology have published guidelines and recommendations for the diagnosis and treatment of PAD.² Improved patient and physician awareness of PAD and the availability of high-quality noninvasive diagnostic imaging have increased the number of seeking patients PAD. for treatment