

Ain Shams University Faculty of Education Physics Department

"A Hybrid Technique Modeling for High Energy Hadron-Nucleus Interactions"

Thesis

Submitted for the Degree of Doctorate of Teacher's Preparation in Science (Physics).

Bv

Moaaz Abdel Hamid Abdel Hamid Abdel Galil Moussa

B.Sc. and Education, Gen. Diploma (Physics), Spec. Diploma (Physics) and M.Sc. (Physics).

Supervised By

Prof.Dr.Mahmoud Yasin El-Bakry

Prof. of Theoretical Physics Faculty of Education Ain Shams University

Faculty of Sciences Ain Shams University

Dr. Mohamed Tantawy Mohamed

Lect. of Theoretical Physics Faculty of Education Ain Shams University

Dr.El-Sayed Abdel-Rahman El-Dahshan

Dr.Amr Mohamed Mahmoud

Asst. Prof. of Theoretical Physics

Khairat

Lect. of Computational Physics Faculty of Sciences Ain Shams University

To

Physics Department - Faculty of Education Ain Shams University

Approval

Title: "A Hybrid Technique Modeling for High Energy Hadron-Nucleus Interactions"

Candidate: Moaaz Abdel Hamid Abdel Hamid Abdel Galil Moussa

Degree of Doctorate of Teacher's Preparation in Science (Physics)

Board of Advisors

Approved by Signature

1. Prof. Dr. / M. Y. El-Bakry

Approved

Physics Department, Faculty of Education, Ain Shams University.

2. Dr. / A. Radi

Physics Department, Faculty of Sciences, Ain Shams University.

3. Dr. / M.T. Mohamed

Physics Department, Faculty of Education, Ain Shams University.

4. Dr. / E. El-Dahshan

Physics Department, Faculty of Sciences, Ain Shams University.

Date of presentation: / / 2016

Post graduate studies:

Stamp: Date of approval: / / 2016

Approval of Faculty Council: / / 2016

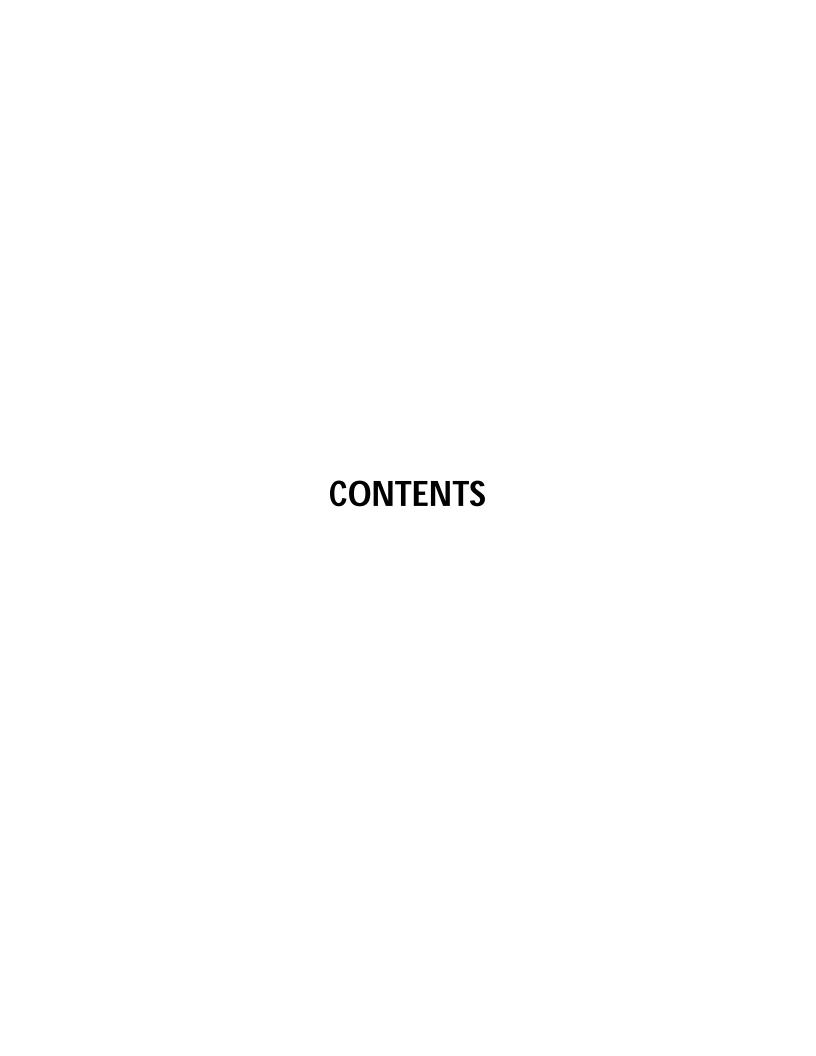
Approval of University Council: / / 2016

ACKNOWLEDGEMENT

Before all and above all, many thanks to Allah, the lord of all being.

The author wishes to express his sincere gratitude to **Prof**. **Dr.**/ **M. Y. El Bakry**, Head of Physics Department, Faculty of Education, Ain Shams University for rendering facilities.

The author indebted with his utmost thanks to **Prof. Dr.**/ *M. Y. El Bakry, Head of Theoretical High Energy Physics Group* for continuous supervision, valuable suggestions, encouragement and fruitful advice through this work.


Deepest gratitude to **Dr.**/ **A.Radi** for his advice, valuable help and encouragement during this study and successful advice throughout this work.

The author wishes to thank **Dr.** / **M. T. Mohamed** for his valuable help, support and productive guidance during this work.

Sincere gratitude to **Dr.**/ **E.El-Dahshan** for his advice, valuable help and support during this study and productive advice throughout this work.

Finally, the assistance of the staff members (**Dr. *M. El-Mashad & Dr. Doaa Habashy**) and colleagues of theoretical high energy physics group (**Mr. Ehab Gamal, Ms. Enas Farouk, and Ms. Shaimaa Farouk**) are highly appreciated.

^{*}Deceased

Contents

Abstract	i
Summary	ii
Introduction	V
Chapter 1: Literature Review	
1-1- Introduction	1
1-2- The Standard Model	2
1-2-1-Forces and Interactions	3
1-2-2-Unification	4
1-2-3-Beyond the Standard Model	5
1-3-Parton Two-Fireball Model (PTFM)	7
1-4-Quark Model	10
1-5-Quantum Chromodynamics	17
1-6-String Model	20
1-6-1- Elementary Particles and Fields	20
1-7-Artificial Neural Networks (ANNs)	24
1-8-Genetic Programming	25
1-8-1-Standard Crossover	27
1-8-2-Standard Mutation	28
1-8-3-Geometric Semantic Operators	29
1-9-Genetic Algorithm (GA)	31
1-9-1-Genetic Algorithm Overview	31
1-10-Evolutionary Neural Network (ENN) model	38
1-10-1-Genetically Evolved Neural Networks	38
1-10-2-Simulated Evolution Example	42
Chapter 2: Experimental Data Review	
2-1-Introduction	45
2-2-Hadron-Nucleus Notations	46
2-3-Basic Characteristics of Multiplicities in (h-A) collisions	46

2-3-1-Multiplicity Distribution of Secondary Particles	46
2-3-2-Shower and Negative Particles Average Multiplicity	47
2-3-3-Neutral Pions Average Multiplicity $< n_{\pi^o} >$	51
2-3-4-Multiplicity Distribution Moments C_{q}	52
2-3-5-Multiplicity Distribution Dispersion D	53
2-3-6-Variation of $< n_g > $, $< n_b > $ and $< n_h > $ with the	56
Incident Energy	
2-3-7-Mean Normalized Multiplicity (R)	58
2-3-8-Inelasticity in Hadron-Nucleus Interaction	62
2-4-Rapidity Distribution of Secondary Particles	63
Chapter 3: Artificial Neural Networks Model for Hadron-	
Nucleus Interactions	
3-1-Introduction	72
3-2-Why Neural network	73
3-3-Biological Neuron Model	74
3-4-Fundamentals of Neural Networks	75
3-4-1-Threshold for Neuron	77
3-4-2-Activation Function	77
3-4-3-Single Layer Feed-forward Network	79
3-4-4-Multi Layer Feed-forward Network	80
3-5-Classification of Learning Algorithms	81
3-5-1-Supervised Learning	82
3-5-2-Unsupervised Learning	82
3-5-3-Reinforced Learning	82
3-6-Perceptron Learning Algorithm	83
3-7- Flow Chart of ANN Model	85
3-8-Multi-Layer Perceptrons (MLPs)	86
3-9-Least-Mean-Square (LMS) Learning	87
3-9-1-LMS Learning Algorithm	88

3-10-Learning with Backpropagation	89
3-11-Backpropagation Algorithm	90
3-12-Training of ANN Model	91
3-13-Applications of Neural Network	92
3-14-Modeling of (h-A) Multiplicity Distribution	94
3-15-Negative & Neutral Particles Average Multiplicity	104
3-16-Moments of Multiplicity Distributions	108
3-17-Multiplicity Distribution Dispersion D.	111
3-18-Variation of $\langle n_g \rangle$ with the Incident Energy	115
3-19-Mean Normalized Multiplicity (R)	117
3-20-Average Inelasticity of Hadron-Nucleus Interactions	124
3-21-Modeling of the Rapidity Distribution for h-A Using	128
ANN	
Chapter 4: Genetic Programming Model for Hadron-Nucl	eus
Interactions	0.00
4-1-Introduction	140
4-2- Genetic Programming	140
4-3-Biological Motivation	141
4-4-Genetic Programming (GP) Model	143
4-5-Genetic Programming Algorithm	144
4-6-Modeling of (h-A) Multiplicity Distribution for Charged	ł
and Negative Pions Using GP Model	149
4-7-Modeling of (h-A) Rapidity Distribution for Charged,	
Positive and Negative Pions Using GP	162
Chapter 5: Evolutionary Neural Network Model for Hadro	on-
Nucleus Collisions	
5-1-Introduction	193
5-2-Soft Computing	193
5-3-Soft Computing and Artificial Intelligence	194
5-4-Hybrid Model	194

5-5-Prediction Model of Rapidity Dist. for (h-A) Collisions	200
Based on BP Algorithm	
5-5-1-Intelligent BP Simulation Model of Rapidity	
Dist.	200
5-6-Optimize Parameters of BP Model of the Rapidity	
Dist. by Genetic Algorithm	201
5-6-1-Genetic Algorithm	201
5-6-2-Optimization of BP Network Parameters by	
GA	202
5-6-2-1-Description of the Algorithm	202
5-6-2-2-Steps of Implementation	204
5-7-Model of GA-BP Neural Net. of the Rapid. Dist. for	207
(h-A) collisions at 100,200 GeV/c and 5.02TeV	
Prediction	
5-7-1-The Design of the GA-BP Model of the Rapid.	
Dist.	207
5-8-Hybrid Technique Model Implementation	209
Conclusions	225
Appendix	230
List of Publications	265
References	267
Arabic Summary	283

Abstract

The present thesis is devoted to study theoretically the high energy hadron- nucleus interactions at high energies.

The Research plan is prepared as follows:

- 1-Collecting the available experimental data for hadronnucleus interactions at high energies.
- 2-Study of the proposed computational models which explain these interactions.
- 3-Study of the artificial neural network (ANN) model to describe hadron- nucleus interactions at high energies.
- 4-Study of the genetic programming (GP) model to describe Hadron- nucleus interactions at high energies.
- 5-Applying the evolutionary neural network model (hybrid technique, HT) to explain the corresponding measurements.
- 6-Comparison between the models predictions and the corresponding experimental data.
- 7-Prediction of the experimental data using ANN, GP and HT model.

Key Words: Particle Physics, ANN Model, GP Model, HT Model.

Summary

The present work presents a theoretical treatment for studying hadron nucleus (h-A) interactions at high energies in the framework of three models. First model, the artificial intelligence (AI) technique which contains the neural network (NN) model for modeling and simulation these interactions and also prediction the collisions of experiments that have not been made yet with describing them by mathematical function obtained from this model. Second, the evolutionary computation which contains the genetic programming (GP) model. Third, the combination between the artificial intelligence and the evolutionary computation, evolutionary neural networks (ENN) model or what is called hybrid technique (HT).

In the first and second chapters we showed the international scientific experiments of the collisions of the positive and negative hadrons with different nuclei at different energies. Also, we showed the different theoretical models which can be applied on these interactions with a brief explanation of the bases of these models.

The results in the last three chapters in the dissertation are summarized as follows:

In the framework of neural network (NN) model, the changes in the characteristics of the interactions of hadron-nucleus (h-A) interactions were extracted at different energies. The multiplicity distribution of charged and negative pions were calculated and compared with the corresponding experimental data which show a good fitting especially in the high energies.