Assessment of Serum Tumor Markers in Regular Hemodialysis Patients

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By

Ibrahim Ahmed Shebl Abu Elnasr

M.B.B.CH

Faculty of Medicine- Alexandria University

Under Supervision of

Prof. Dr. Abd Elbaset Alshaarawy Abd Elaziem

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Mohamed Saeed Hassan

Lecturer of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2018

ACKNOWLEDGMENT

First, all thanks to **ALLAH** for blessing this work until it has reached its end, as a little part of his help throughout life.

I would like to express my gratitude and special thanks to Prof. Dr. Abd Elbaset Alshaarawy Abd Elaziem Professor of Internal Medicine and Nephrology – Faculty of Medicine – Ain Shams University. I am greatly indebted for his great help, constant encouragement and care throughout carrying out this work until it came to light.

Hassan Lecturer of Internal Medicine and Nephrology – Ain Shams University for his sincere help, enthusiastic encouragement and kind supervision.

I would like to thank my **Mother**, my **Wife** and my lovely daughter **Salma** for their support, and special dedication to the soul of my **Father**.

Ibrahim Shebl Abu Elnasr

List of Contents

Subject	Page
Contents	Ι
List of abbreviations	II
List of tables	IV
List of figures	V
Introduction	1
Aim of the work	5
Review of Literature	
• Chapter (1): Chronic kidney disease and cancer	6
• Chapter (2): Tumor markers	17
• Chapter (3): Hemodialysis and tumor markers	30
Subjects and Methods	50
Results	53
Discussion	67
Summary	80
Conclusion	83
Limitations of the study	84
Recommendations	85
References	86
الملخص العربي	

List of abbreviations

AFP	Alpha fetoprotein
AUA	American Urological Association
BCC	Basal cell carcinoma
BCR-ABL	The breakpoint cluster region protein-Abelson
	(Philadelphia Chromosome)
BEN	Balkan endemic nephropathy
BFP	Basic fetoprotein
BPH	Benign prostatic hypertrophy
CA125	Cancer antigen 125
CA15-3	Cancer antigen 15-3
CA19-9	Cancer antigen 19-9
CA50	Cancer antigen 50
CA72-4	Cancer antigen 72-4
CEA	Carcinoembryonic antigen
CKD	Chronic kidney disease
CLIP	Cancer of the liver Italian program
CLM	Colorectal liver metastases
CRC	Colorectal cancers
CrCl	Creatinine clearance
DM	Diabetes mellitus
DNA	Deoxyribonucleic acid
DRE	Digital rectal examination
eGFR	Estimated glomerular filtration rate
ESRD	End stage renal disease
FIT	Fecal immunochemical test
FOBT	Fecal occult blood test
fPSA	Free prostate specific antigen
GISTs	Gastrointestinal stromal tumors
GNs	Glomerulonephritis
GPL	Glycosyl phosphatidylinositol
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
hCG	Human chorionic gonadotropin
HCV	Hepatitis C virus
HD	Hemodialysis
HE4	Human epididymis protein 4
HPAFP	Hereditary persistence of alpha fetoprotein

HPV	Human nanillama vimia
	Human papilloma virus
IAP-1	Inhibitor of apoptosis-1
IgA	Immunoglobulin A
IRMA	Renal Insufficiency and Anticancer Medications
kDA	Kilo Dalton
KIT	Proto-oncogene receptor tyrosine kinase
LCA	Lens culinaris agglutinin
MDRD	Modification of Diet in Renal Disease
ml/min	Milliliter/minute
MRI	Magnetic resonance imaging
ng/ml	Nanogram/milliliter
NHANES	National Health and Nutrition Examination Survey
NSE	Neuron-specific enolase
PAI-1	Plasminogen activator inhibitor type-1
PAP	Papanicolaou
PDGFRA	Platelet-derived growth factor receptor alpha
PSA	Prostate specific antigen
PSAP	Prostatic acid phosphatase
RRT	Renal replacement therapy
SCC	Squamous cell carcinoma
SLX	Sialyl Lewis X-1
t1/2	Half life time
TCC	Transitional cell carcinoma
tPSA	Total prostate specific antigen
U/ml	Unit/milliliter
ug/L	Microgram/liter
uPA	Urokinase-type plasminogen activation

Lists of Tables

Tables of Review of Literature

Table No.	Title	Page
Table (1)	Cancer incidence in ESRD	14
Table (2)	Considerations for cost effective cancer	15
	screening in dialysis patients.	
Table (3)	Summary of tumor markers in dialysis patients	16
Table (4)	Summary of common tumor markers	29
	applications	
Table (5)	Molecular weights of some tumor markers	33

Tables of the Study Results

Table No.	Title	Page
Table (1)	Demographic data of both groups	53
Table (2)	Etiology of ESRD in HD group	54
Table (3)	Vascular access and UF volume in HD group	55
Table (4)	Comparison of blood pressure in both groups	55
Table (5)	Comparison of Hemoglobin in both groups	56
Table (6)	Laboratory data of HD group	57
Table (7)	Comparison of AFP levels in both groups	58
Table (8)	Comparison of CEA in levels both groups	59
Table (9)	Comparison of tPSA in levels both groups	60
Table (10)	Correlation between the three tumor markers	61
	with different parameters in HD group	
Table (11)	Multivariate Linear regression for the	65
	parameters affecting AFP in HD group	
Table (12)	Multivariate Linear regression for the	65
	parameters affecting CEA in HD group	
Table (13)	Multivariate Linear regression for the	66
	parameters affecting tPSA in HD group	

List of Figures

Figures of Review of Literature

Fig. No.	Title	Page
Fig. (1)	Schematic presentation of various cancers that are	18
	associated with elevated tumor markers	

Figures of the Study Results

Fig. No.	Title	Page
Fig. (1)	Etiology of ESRD in HD group	54
Fig. (2)	Comparison of AFP levels in both groups	58
Fig. (3)	Comparison of CEA levels in both groups	59
Fig. (4)	Comparison of tPSA levels in both groups	60
Fig. (5)	Correlation between AFP and age of HD patients	63
Fig. (6)	Correlation between CEA and age of HD patients	63
Fig. (7)	Correlation between tPSA and age of HD patients	63
Fig. (8)	Correlation between CEA and duration of HD	64
Fig. (9)	Correlation between tPSA and duration of HD	64
Fig. (10)	Correlation between tPSA and PTH in HD patients	64

Introduction

Chronic kidney disease (CKD) constitutes a public health problem, worldwide. The number of end-stage renal disease (ESRD) patients receiving renal replacement therapy (RRT) is estimated at 41.4 million, with an annual growth rate of 8% (*Radhakrishnan et al.*, 2014).

Furthermore, CKD is considered as an important cause for global mortality. The number of deaths from CKD has risen by 82.3% in the last two decades, the third largest increase among the top 25 causes of death (*Radhakrishnan et al., 2014*).

Although kidney transplantation is an effective treatment for ESRD, dialysis is still the commonest treatment for such patients. Patients maintained on dialysis are potentially at increased risk of cancer for several reasons, including: secondary immune deficiency, previous treatment with immunosuppressive or cytotoxic drugs, underlying kidney disease, uremic toxins, hyperparathyroidism, nutritional deficiencies, and altered DNA repair (*Derakhshan et al.*, 2004).

Tumor markers are a very heterogeneous group of molecules that are generally found in very small

concentrations in the plasma and serum of healthy individuals. In the process of neoplastic differentiation, the cell can synthesize, release, or induce synthesis of other cells, thus increasing their concentration in plasma and serum (*Trapé et al.*, 2011). Tumor marker can be used to monitor the course of a malignancy or to detect a relapse (*Sharma et al.*, 2015).

Tumor marker may also increase their plasma concentration in patients without cancer due to processes that increase the release or reduce catabolism, and so give rise to false positives results (*Trapé et al.*, 2011). Elevated levels of several tumor markers can be frequently detected in patients with impaired kidney function because their renal elimination is retarded (*Coppolino et al.*, 2014).

Alpha fetoprotein (AFP) as an oncogenic glycoprotein is normally expressed during gestation. AFP can be synthesized by yolk sac, fetal liver, and some gastrointestinal cells. A rise of serum AFP level is routinely taken into account for abnormality in adults and frequently utilized as a suitable biomarker for yolk sac tumor, tumors of gonadal origin, hepatocellular carcinoma (HCC), and certain gastric carcinomas (*Sun et al.*, 2015).

Prostate specific antigen (PSA) is a serine protease glycoprotein produced by normal as well as malignant prostatic epithelium. It occurs in different structural and functional forms in seminal plasma and serum, where the levels can be determined by immunoassays (*Murthy et al.*, 2015). Although new biomarkers are emerging, PSA and its derivatives remain the most widely used and practical test to detect prostate cancer. Percent free PSA (%fPSA) has been demonstrated to improve positive test results during prostate biopsy and to reduce the number of unnecessary biopsies in men with a moderately elevated serum PSA level (*Chen et al.*, 2015).

Carcinoembryonic antigen (CEA) is excreted by certain embryonic and adult tissues in addition to adenocarcinoma of the digestive organs. Extensive studies of patients bearing primary and metastatic colorectal neoplasms have determined that its primary use is in the detection of local and metastatic cancer recurrence after initial resection of the primary tumor, Clinical relevance of the CEA assay also has been used in the follow-up management of patients with, breast, lung, prostatic, pancreatic and ovarian carcinoma (*Malati*, 2007).

There are controversial data about tumor markers in CKD and dialysis population, as some studies reported increased AFP, and CEA levels in hemodialysis (HD) patients while other studies observed normal levels of these markers in HD and kidney transplantation patients (*Derakhshan et al.*, 2004).

Regarding PSA levels some authors observed normal levels of PSA in their patients, while others observed high level of this marker in HD patients (*Derakhshan et al.*, 2004).

Aim of the work

To evaluate the diagnostic value of AFP, total PSA (tPSA) and CEA in HD patient in comparison to normal population.

Chapter (1) CKD and Cancer

Chronic Kidney Disease and Cancer

CKD and cancer are connected in a number of ways in both directions: cancer can cause CKD either directly or indirectly through the adverse effects of therapies, CKD may conversely be a risk factor for cancer, and both may be associated because they share common risk factors (*Stengel*, 2010).

Observational studies have suggested an increased cancer risk in people with early-stage CKD, before requiring dialysis or transplantation. An excess risk of 1.2 times for all cancers was reported during the 5 years before RRT (*Wong et al.*, 2009).

The dialysis population exhibited a risk of cancers of the kidney and urinary tract over and above the heightened risk for cancer seen at many other sites. The excess risk was attributed to factors that differed for renal parenchyma and urothelium. Non specific change within the kidney resulting from loss of renal function suggested to be acquired renal cystic disease is the putative risk factor for the excess of renal parenchymal cancers that was seen independently of primary renal disease and increased in frequency with advancing duration of dialysis (*Stewart et al.*, 2003).

Chapter (1) CKD and Cancer

Patients maintained on dialysis are potentially at increased risk of cancer for several reasons, including: the presence of chronic infection, especially in the urinary tract; a weakened immune system; previous treatment with immunosuppressive or cytotoxic drugs; nutritional deficiencies; and altered DNA repair. In addition, the underlying disease leading to renal failure, the persistent metabolic changes associated with it, and the development of certain complications, such as acquired renal cystic disease, may predispose to cancer (*Maisonneuve et al.*, 1999).

In addition, Cancer represents one of the most important causes of long-term mortality after kidney transplantation; the development of malignancies is a well-known complication after organ transplantation. Reports from large kidney transplant registries demonstrate a rise in the incidence of cancer in this population. The overall incidence has been reported to be 2 to 10 fold, and in some cases it can even be 100 fold when compared to the general population (*Navarro et al.*, 2008).

Moreover the etiology of post-transplantation malignancy seems to be multi-factorial and probably involves a combination of the following events: impaired

7

Chapter (1) CKD and Cancer

immune activity against viruses, impaired immunosurveillance of neoplastic cells, DNA damage and disruption of DNA repair mechanisms, and the up regulation of cytokines that can promote tumor progression, all of these events certainly occur during long-term immunosuppressive therapy after renal transplantation (*Rama & Grinyó*, 2010).

Also there is increase risk of malignancy with Cyclophosphamide therapy which is a common drug among glomerulonephritis (GNs) patients; as in idiopathic membranous GNs gives a threefold increase in cancer risk. For the average patient, this finding translates into an increase in annual risk from approximately 0.3% to 1.0%. The increased risk of malignancy must be balanced against the improved renal survival (*Van den Brand et al., 2014*).

In Japan, the most common cancer in ESRD patients is renal cell carcinoma, and the second is multiple myeloma, followed by liver and colon cancer in males and uterine cancer in females. While the most common cancer in ESRD patients in the USA is renal cell carcinoma as is in Japan, the second is prostate cancer in males and breast cancer in females (*Kitai et al.*, 2016).

8