

Ain Shams University Faculty of Science Chemistry Department

Modified folding carton for packaging

Thesis

Submitted For Ph.D. Degree in Chemistry
(Organic Chemistry)

Presented by

Magda Ali Awad El-Samahy

Packaging materials Department
National Research Center (NRC)

To

Chemistry Department
Faculty of Science
Ain Shams University
2010

Ain Shams University Faculty of Science Chemistry Department

Modified folding carton for packaging

Thesis

Submitted by

Magda Ali Awad El-Samahy

For Ph.D. Degree in Chemistry (Organic Chemistry)

Supervised by

Prof. Abdel-Gawad Mohamed Rabie

Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University.

Prof Abo El-fotoh Abdel-moneam Abdel-Hakim

Professor at Polymers and Pigments Department, National Research Center.

Prof. Mohamed Mohamed Ahmed El-Sakhawy

Cellulose and Paper Department, National Research Center.

Dr. Galal Ali Mohamed Salam

Ass.Prof. Printing, Pulbishing and Packaging Department Faculty of Applied Arts, Helwan University

APPROVAL SHEET Ph.D. Thesis Entitled

Modified folding carton for packaging by Magda Ali Awad El-Samahy

Thesis Advisors	Approved
Prof. Dr. Abdel-Gawad Mohamed Rabiea Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University.	••••••
Prof. Abo El Fettouh Abdel-moneam Abdel-Hakim Polymers and Pigments Department, National Research Center.	••••••
Prof. Mohamed Mohamed Ahmed El-Sakhawy Cellulose and Paper Department, National Research Center.	•••••••••••••••••••••••••••••••••••••••
Dr Calal Ali Mahamad Salam	

Dr.Galal Ali Mohamed Salam

Ass.Prof. Printing, Pulbishing and Packaging Departme Faculty of Applied Arts, Helwan University

Head of Chemistry Department Prof.

ACKNOWLEDGEMENTS

First and foremost, the author is deeply thankful to **Allah** by the grace of whom the progress of this work was possible.

The author wishes to express her sincere appreciation and thanks to Prof. Dr. **Abdel-Gawad Mohamed Rabie**, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University for supervision, guidance, interest, valuable advises and encouragement.

Special and sincere thanks and gratitude are due to **Prof. Abo El-fotoh Abdel-moneam**, Professor at Polymers and Pigments Department, National Research Center, **Prof. Mohamed Mohamed Ahmed El-Sakhawy**. Prof. at Cellulose and Paper Department, National Research Center and *Ass.Prof.* **Galal Ali Mohamed Salam** *Ass.Prof. Printing,Pulbishing and Packaging Depart* for *Faculty of Applied Arts, Helwan University* suggesting the topic of this work and for their careful guidance, continuous supervision, discussion and valuable criticism throughout the work.

Grateful acknowledgement is expressed for the facilities rendered by the National Research Center, which made this work possible.

Furthermore, I would like to offer my great thanks to my family for the moral support and encouragement.

CONTENTS

		Page
	List of Tables	
	List of Figures	
	Object of investigation ABSTRACT	
I.	INTRODUCTION	1
1.	Chemical composition of lignocellulosic biomass	1
1.1.	Cellulose	2
1.2.	Hemicellulose	4
1.3.	Lignin	6
2.	Pulping	7
2.1.	Mechanical pulping	9
2.2.	Semichemical pulping	9
2.3.	Chemical pulping	10
2.3.1.	Alkaline pulping	11
2.3.2.	Sulphite pulping	12
2.3.3.	ASAM pulping	13
2.3.4.	Organosolv pulping	13
3.	Nonfibrous additives	15
3.1.	Sizing	16
3.1.1.	Types of sizing agents	17
3.1.2.	Polyvinyl alcohol	18
3.1.3.	Starch	20
3.1.4.	Rosin	23
3.1.4.1.	Precipitation of rosin size with alum	24
3.1.4.2.	Wet-end factors that influence rosin size performance	25
3.1.5.	Fillers	26
3.1.5.1.	Clay	27

3.1.5.2.	Kaolin	27
3.1.5.3.	Calcium carbonate	28
3.1.5.4.	Titanium dioxide	29
3.1.5.5.	Talc	30
3.1.5.6.	Ash of waste paper as filler in papermaking	31
4.	Effect of fillers	32
4.1.	Effect of fillers on the optical properties	33
4.2.	Effect of fillers on the strength properties	34
4.2. 5.	Retention of filler	35
5.1.	Retention aids	36
5.1.1.	Inorganic retention aids	37
5.1.2.	Retention aids based on natural organic raw materials	37
5.1.3.	Synthetic, water-soluble organic polymers	37
6.	Emulsion polymerization systems	40
6.1.	Overview on emulsion polymerization	40
6.1.1.	The advantages of emulsion polymerization over the other methods	41
6.1.1.7.	• • • • • • • • • • • • • • • • • • • •	41 42
	the other methods	
7.	the other methods Paper coating	42
7. 8.	the other methods Paper coating Folding carton	42 46
7. 8. 9.	the other methods	42 46 47
7. 8. 9.	the other methods	42 46 47 50
7. 8. 9. 9.1. 10.	the other methods	42 46 47 50 51
7. 8. 9. 9.1. 10.	the other methods	42 46 47 50 51 53
7. 8. 9. 9.1. 10. 11.	the other methods	42 46 47 50 51 53 55
7. 8. 9. 9.1. 10. 11. 11.1.	the other methods	42 46 47 50 51 53 55
7. 8. 9. 9.1. 10. 11. 11.1. II.	the other methods	42 46 47 50 51 53 55 57

2.3.	Estimation of pentosan	60
2.4.	Estimation of lignin	61
2.5.	Estimation of holocellulose	62
2.6.	Estimation of alphacellulose	63
2.7.	Thermogravimetric analysis (TGA)	64
2.8.	SEM examination	65
3.	Pulping	65
3.1.	Semichemical pulp from rice straw and bagasse using sodium hydroxide	65
4.	Preparation of laboratory hand-made paper sheets	66
4.1.	Beating and disintegration	66
4.2.	Sheet formation	66
5.	Paper testing	67
5.1.	Physical properties of paper	67
5.1.1.	Density	67
5.1.2.	Porosity	67
5.1.3.	Water absorption	68
5.1.4.	Basis weight	68
5.2.	Strength properties	68
5.2.1.	Tensile strength and breaking length	68
5.2.2.	Bursting strength	69
5.2.3.	Tear resistance	70
6.	Treatment of paper sheets using different fillers	71
6.1.	Kaolin in absence and presence of rosin size (natural polymer) added during sheets making	71
6.2.	Talc powder added during sheets making	71
6.3.	Calcium carbonate added during sheets making.	71
6.4.	Retained filler estimation	71
7.	Treatment of recycled carton using different polymers	72

7.1.	Commercial polymers	72
7.1.1.	Polyvinyl alcohol (PVA) used for dipping sheets.	72
7.1.2.	(Polyvinyl alcohol / borax) added during sheets making.	73
7.1.3.	Polyvinyl alcohol 4% and different amounts of CaCo ₃ added during sheets making.	73
7.2.	Commercial polystyrene for dipping sheets	74
7.2.1.	Commercial polystyrene, styrene-butadiene rubber (SBR) and dioctyl phthalate (DOP)) for dipping sheets	74
7.3.	Commercial styrene - acrylate copolymer 50 % solid content for dipping sheets	74
7.4.	Recycled styrene - butadiene antishock for dipping sheets	75
7.4.1.	Emulsified of recycled styrene – butadiene antishock for dipping recycled carton sheets.	75
8.	Preparation of MMA / BuA and St / BuA copolymer latex using the semi continuous process for treatment of recycled carton sheets.	75
8.1.	Treatment of recycled carton with copolymer latex BuA/MMA and BuA/St through two techniques	77
8.1.1.	Dipping technique	77
8.1.2.	During sheets making technique	77
9.	Statistical mathematical evaluation of results	77
10.	Printing process and procedure	77
10.1.	Color strength measurements	81
10.2.	Light fastness	81
10.3.	CIELAB (or CIE L*a*b*, CIE Lab)	81
III.	RESULTS AND DISCUSSION	84
1.	Test liner paper and folding carton from some lignocellulosic materials	84
1.1.	Analysis of raw materials	85

2.	Effect of different concentrations of sodium hydroxide on the properties of the prepared semichemical pulps made in Rakta Co	85
3.	Effect of pulping temperature	88
4.	Effect of pulping temperature on the properties of prepared semichemical pulps made in Edfu Co.	90
5.	Mechanical and physical properties of recycled carton sheets using different concentrations of kaolin filler (5- 20 %) in presence of 1.5% rosin size added during sheets making	95
5.1.	Mechanical and physical properties of recycled carton sheets using 15% treated kaolin in absence of rosin size added during sheets making.	100
5.2.	Mechanical and physical properties of recycled carton sheets using 15% treated kaolin in presence of 1.5% rosin size added during sheets making.	103
5.3.	Mechanical and physical properties of recycled carton sheets using different concentrations of talc powder (5-20%) added during sheets making.	106
5.4.	Effect of 15% fillers addition on the strength properties of recycled carton sheets:	110
6.	Effect of polymer addition and retention of fillers on the strength properties of the recycled carton sheets	114
6.1.	Addition of PVA of different concentrations	114
6.1.1.	Addition of 2% PVA	115
6.1.2.	Addition of 3% PVA	120
6.1.3.	Addition of 4% PVA	123
6.1.4.	Conclusions using polyvinyl alcohol	126
6.2.	Mechanical and physical properties of recycled carton using different concentrations of PVA-Borax during sheets making.	129

6.3.	Mechanical and physical properties of recycled carton using 4% PVA/different concentrations of CaCO ₃ during sheets making.	133
7.	Mechanical and physical properties of recycled carton sheets dipped in styrene butadiene rubber (SBR) and 10% PS in (toluene).	136
7.1.	Mechanical and physical properties of recycled carton sheets dipped in PS solution in toluene (10%) in presence of dioctyl phythalate (DOP) as plasticizer.	140
7.2.	Mechanical and physical properties of recycled carton sheets dipped in different concentrations of commercial emulsified copolymer PS-BuA (50% solid content).	143
7.3.	Mechanical and physical properties of recycled carton sheets dipped in different concentrations of recycled styrene - butadiene antishock.	146
7.4.	Mechanical and physical properties of recycled carton sheets dipped in 10 % emulsified recycled styrene- butadiene antishock and SLS.	149
7.5.	Mechanical and physical properties of recycled carton sheets dipped in different concentrations of PS-BuA copolymer latex.	153
7.6.	Mechanical and physical properties of recycled carton sheets using different concentrations of emulsified PS-BuA (1-20 %) copolymer added during sheets making.	157
7.7.	Comparison between the effect of different types of polymer treatment on the mechanical and physical properties of the prepared recycled carton sheets.	161
7.8.	Mechanical and physical properties of recycled carton sheets dipped in 10% of emulsified copolymer PS-BuA and PS in (toluene).	164
8.	Mechanical and physical properties of recycled carton sheets dipped in different concentration of emulsified MMA-BuA (2-4%) copolymer.	166

8.1.	Mechanical and physical properties of recycled carton sheets using different concentration of MMA-BuA emulsified copolymer (1-10 %)	170
	added during sheets making.	
9.	Thermal gravimetric analysis (TGA)	174
10.	Microstructure of untreated and treated recycled carton	180
11.	Evaluation of printability	188
11.1.	Light fastness	197
11.2.	Color strength (K/S)	198
IV.	Summary and Conclusion	199
V.	References	208
VI.	الملخص العربي	231