

Phase Characteristics of Aluminum -Base Alloys

Thesis

Submitted for the Ph.D. Degree of Teacher's Preparation in Science (Physics).

By

Heba Yehia Mohammed El-Demerdash

(B.Sc., M.Sc)

To

Department of Physics
Faculty of Education
Ain Shams University
Supervised by

Prof. Dr. Fakhry Abd El-Salam Ibraheim

Physics Dept., Faculty of Education, Ain Shams University.

Prof. Dr. Lobna Ali Abd El-Wahab

Head of Physics Department, National Centre for Radiation Research and Technology

Asist. Prof. Asaad Mohammed Abd El Khalek

Physics Department, Faculty of Education, Ain Shams University

Asist. Prof. Radwan Hamouda Nada

Physics Dept. Faculty of Education, Ain Shams University.

2010

Abstract

Name: Heba Yehia Mohammed El-Demerdash.

Title: Phase Characteristics of Aluminum - Base

Alloys.

Submitted to: Physics Department, Faculty of Education, Ain Shams University.

The structural variations and mechanical properties of Al-Si based ternary alloys containing either Ag or Sn were studied for samples prepared form elements of purity 99.99%, homogenized at 823K for 53h and aged at 673K for 2h then quenched into iced water.

The structural variations of all the tested alloys were studied by using (TEM) transmission electron microscope.

The changes in the mechanical properties of the tested alloys were studied through:

- 1- tensile tests in the temperature range (413 493K).
- 2- applying the different values of :
 - a) cyclic stress reduction σ_{cy} (0.87, 1.74, 2.6 and 3.48 MPa) at constant frequency $\upsilon = 0.38$ Hz.
 - b) frequency v (0.18, 0.25, 0.33 and 0.38 Hz) at constant cyclic stress reduction $\sigma_{cv} = 3.48$ MPa.

Softening behaviour was observed with increasing the working temperature, σ_{cy} and/or $\upsilon.$ The mechanical results were discussed according to the structure analysis of TEM micrographs. Sn addition improved the mechanical properties of the samples but this was not achieved with Ag addition which improved softening and ductility under the same testing conditions.

Approval Sheet

Title : Phase Characteristics of Aluminum -Base Alloys.

Candidate: Heba Yehia Mohamed El-Demerdash.

Degree: Ph.D. Degree of Teacher's Preparation in Science

(Physics).

Board of Advisors

Approved by Signature

Prof. Dr. Fakhry Abd El-Salam Ibraheim.

Physics Department, Faculty of Education, Ain Shams University.

Prof. Dr. Lobna Ali Abd El-Wahab.

National Centre for Radiation Research and Technology.

Asist. Prof. Asaad Mohammed Abd El-Khalek.

Physics Department, Faculty of Education, Ain Shams University

Asist. Prof. Radwan Hamouda Nada.

Physics Department, Faculty of Education, Ain Shams University.

Date of presentation / /2010

Post graduate studies:

Stamp: / / Date of approval: / /

Approval of Faculty Council : / / 2010

Approval of University Council: / / 2010

<u>ACKNOWLEDGMENT</u>

Before all and above all, many thanks to Allah, the most gracious, the most merciful.

The author wishes indebted with her utmost thanks to *Prof. Dr. Fakhry Abd El-Salam Ibraheim* for continuous supervision, valuable suggestions, encouragement and fruitful advice through this work.

Deepest gratitude to *Prof. Dr. Lobna Ali Abd El-Wahab* for her advice, valuable help and encouragement during this study.

The author wishes to thank Asist. Prof. Asaad Mohammed Abd El-Khalek for his valuable help, encouragement and fruitful advice throughout this work.

The author wishes to thank *Asist. Prof. Radwan Hamouda Nada* for his valuable help, encouragement and fruitful advice throughout this work.

Thanks are also due to *Prof. Dr. Madeha Fadel*, Head of Physics Department, and the staff members and colleagues of our Laboratory, at the Faculty of Education, Ain Shams University.

Contents

	Page
Abstract	5
Summary	6
List of Figures	8
List of Tables	12
<u>Chapter I</u>	
Theoretical Background and Literature Review	
1. Arrangement of atoms	14
1.1. Single crystal	14
1.2. Polycrystalline materials	14
1.3. Amorphous materials	14
2. The crystal structure of Metals	15
3. Crystal imperfections	15
3.1. Point defects	16
3.1.1. Intrinsic point defects	17
3.1.2. Extrinsic point defects	19
3.2. Line defects	19
3.2.1. The edge dislocation	19
3.2.2. The screw dislocation	21
i) The Burger's vector	22
ii) Dislocation width	23
iii) Dislocation motion	23
iv) The effect of grain size on the dislocation	
motion	24
v) The effect of precipitate particles on the	2.4
dislocation motion	24
vi) Dislocation interaction and formation of jogs	25
vii) Interaction of solute atoms and point defects	25
with dislocations	25
3.3 Surface defects	26
3.3.1. Grain boundaries	26
3.3.2. Twin boundaries	26
3 3 3 Stacking fault	27

Contents

3.3.4. Low angle boundary	27
3.3.5. Low angle tilt boundary	27
3.3.6. Low angle twist boundary	27
3.4. Volume defects	27
4. Strengthening mechanisms	28
4.1. Precipitation hardening	28
4.2. Solid solution hardening	28
4.3. Anneal hardening	29
4.4. Strain hardening	29
4.5. Grain boundary hardening	30
4.6. Grain size effect	30
5. Work hardening of metals and alloys	31
6. Nucleation and growth of precipitates	32
7. Metal failures	32
7.1. ductile failure	32
7.2. Brittle fracture	32
7.3. Fatigue failure	33
8. Tensile properties of metals	33
9. Hardness	33
10. Stress-strain curve	35
11. Creep and creep stages	37
12. Mechanisms of creep in polycrystalline	
materials	39
12.1. Dislocation creep	39
12.2. Vacancy creep	40
12.3. Grain boundary sliding	40
12.4. Direct diffusion or diffusion creep	42
13. Creep theories	42
13.1. Transient creep theories	42
13.2. Exhaustion theories	43
13.3. Logarithmic power creep theories	43
13.4. Work- hardening theories	
13.5. Parabolic creep theory	44

Contents 13.6. Lattice friction theory 44 13.7. Dislocation interaction Theories 44 13.8. Dislocation cross - slip theory 44 14. Steady state creep theories 45 15. Dynamic loading or effect of cyclic stress 45 48 16. Al-Si phase diagram 17. Previous work in the field of the present study 49 18. The aim of the present work 56 Chapter II **Experimental techniques and** measuring devices 1. Specimens Preparation and heat treatment 58 2. Structure Examinations 58 3. The tensile testing unit 58 4. The static and cyclic stress reduction testing 60 unit Chapter III **Experimental Results** 1. Stress – strain relations, curves and 63 parameters i) Yield and fracture stresses 63 ii) Young's modulus and fracture time 63 iii) The linear coefficient of parabolic work hardening 63 iv) Resilience and toughness 64 reduction, curves Cyclic stress parameters for different values of cyclic stress reduction σ_{cy} and / or different 71 frequencies v Chapter IV **Discussion**

112

Discussion

Contents	
Conclusions	127
References	129
Arabic summary	

	Page
Fig.(1): Arrangement of atoms in: (a) Single-	
crystalline, (b) Polycrystalline, and (c)	1.5
Amorphous material.	15
Fig.(2): Examples of point defects.	17
Fig.(3): Schematic diagrams of a: (a) Schottky defect and (b) Frenkel defect.	18
Fig.(4): Schematic diagram of an anti-site defect.	18
Fig.(5): Diagram of extrinsic point defects of substitutional impurities and an interstitial	
impurity.	19
Fig.(6): a. Positive edge dislocation and	
b. Negative edge dislocation.	20
Fig.(7): stiff dislocation.	21
Fig.(8): A screw dislocation. (Burgers vector b), s:	
start of Burgers circuit, F: Finish of Burgers circuit.	22
Fig.(9): A twin plane.	26
Fig.(10): A low angle tilt boundary.	27
Fig.(11): Typical stress – strain curve.	36
Fig.(12): Creep curve.	38
Fig.(13): Cavity nucleation mechanism: (a) sliding leading to cavitation from ledges (and triple points); (b) cavity nucleation from vacancy condensation at stress regions; (c) cavity nucleation from a Zener – Stroh mechanism; (d) the formation of a cavity from a particle- obstacle in conjunction with the mechanisms described in (a-c).	41
Fig.(14): Stress – time variation for fluctuating	47
stress. Fig.(15): Completely reversed stresses.	
	47
Fig.(16): Al-Si phase diagram.	48

Fig.(17): Schematic diagram of tensile testing	
apparatus.	60
Fig.(18): Creep testing unit for static stress.	61
Fig.(19): Creep testing unit for cyclic stress	
reduction.	62
Fig.(20): The stress-strain curves at different	
working temperatures for: (a) alloy A, (b)	
alloy B, (c) alloy C, (d) alloy D, (e) alloy	
E and (f) alloy F.	65
Fig.(21): The temperature dependence of (a) σ_y , (b)	
σ_f , (c) t_f , (d)Y, (e) χ , and (f) U_R , (g) U_T ,	
(h) ε_f , (i) L, (j) H, (k) ln H and (l) ln t_f for	
the tested alloys.	67
Fig.(22): The variation of : (a) σ_y , (b) σ_f , (c) t_f , (d) Y,	
(e) χ , (f) U_R , (g) U_T , (h) ε_f , (i) L and (j) H,	
with Sn wt.%.	70
Fig.(23a–27a): The strain-time curves at constant	, 0
frequency=0.38Hz under different	
values of cyclic stress reduction at	
the working temperatures (413, 433,	
453, 473 and 493K), respectively,	
for the tested alloys.	73
Fig.(23b–27b): The strain-time curves at constant	
cyclic stress reduction=3.48MPa	
under different frequencies v at the	
working temperatures (413, 433,	
453, 473 and 493K), respectively,	
for the tested alloys.	74
Fig.(28a–32a): In ϵ_{tr} vs. In t at constant	
frequency=0.38Hz under different	
values of cyclic stress reduction at	
the working temperatures (413,	
433, 453, 473 and 493K),	_
respectively, for the tested alloys.	84
Fig.(28b–32b): ln ε_{tr} vs. ln t at constant cyclic stress	

reduction=3.48MPa under different	
frequencies v at the working	
temperatures (413, 433, 453, 473	
and 493K), respectively, for the	
tested alloys.	85
Fig.33(a, b): The dependence of the creep parameter	
n on: (a) σ_{cv} and (b) v at different	
working temperatures for all alloys.	94
Fig.33(c, d): The dependence of the creep parameter	
β on: (c) σ_{cy} and (d) υ at different	
working temperatures for all alloys.	96
	70
Fig.34(a): $\dot{\mathcal{E}}_{st}$ vs. σ_{cy} at different working	
temperatures for all alloys.	98
Fig.34(b): $\dot{\mathcal{E}}_{st}$ vs. υ at different working	
temperatures for all alloys.	99
Fig.35(a): In β vs. 1000/T at different values of	
cyclic stress reduction σ_{cy} for all alloys.	101
-	101
Fig.35(b): $\ln \beta$ vs. 1000/T at different frequencies	
υ for all alloys.	102
Fig.35(c): ln $\dot{\mathcal{E}}_{st}$ vs. 1000/T at different values of	
cyclic stress reduction σ_{cy} for all alloys.	100
cyclic stress reduction o _{cy} for an anoys.	103
Fig.35(d): In \mathcal{E}_{st} vs. 1000/T at different	
frequencies v for all alloys.	104
	104
Fig.36(a): In β vs. In $\dot{\varepsilon}_{st}$ at different values of	
cyclic stress reduction σ_{cy} for all	
alloys.	106
	100
Fig.36(b): In β vs. In \mathcal{E}_{st} at different frequencies	
υ for all alloys.	107
Fig.37(a): Room temperature Electron micrographs	- 0 7
-	
	120
for samples of the tested alloys aged at 673K for 2h.	120

Fig.37(b): Diffraction patterns for samples of the alloys A, B and F aged at 673K for 2h. 121

List of Tables

	Page
Table(1): Dimensional classification of crystal	
defects.	16
Table(2) : The temperature dependence of σ_y , σ_f ,	
Y , t_f , χ , U_R , U_T , ϵ_f , L , H , H_o and α for	
alloys A, B, C, D, E and F at initial	
temperature (413 K) and final	60
temperature (493 K).	69
Table(3): The activation energy of the fracture	
mechanism of alloys A, B, C, D, E and F.	71
Table(4) : The parameters for constant $v=0.38Hz$	/ 1
and different values of σ_{cy} for alloys A,	
B and C.	108
Table(5): The parameters for constant $v=0.38$ Hz	100
and different values of σ_{cv} for alloys	
D, E and F.	109
Table(6): The parameters for constant	
σ_{cy} =3.48MPa and different	
frequencies v for alloys A, B and C.	110
Table(7): The parameters for constant	
σ_{cy} =3.48MPa and different	
frequencies v for alloys D, E and F.	111
Table(8): The percent ratio of hardening R, and	
the percent ratio of softening, S, for	
all the tested alloys referred to their Sn content with respect to the	
parameter Y for the binary alloy.	119
Table(9) : The average values of the activation	11)
energy (for β values) at different	
frequencies v and constant $\sigma_{cy} = 3.48$	
MPa.	123
Table(10): The average values of the activation	
energy (for β values) at different σ_{cy}	
values and constant $v = 0.38$ Hz.	123

List of Tables

Table(11):	The average values of the activation	
	energy (for $\dot{\mathcal{E}}_{st}$ values) at different	
	frequencies υ and constant $\sigma_{cy} = 3.48 \text{ Mpa}.$	124
Table(12) :	The average values of the activation	
	energy (for $\dot{\mathcal{E}}_{st}$ values) at different	
	σ_{cy} values and constant υ = 0.38 Hz.	124

Chapter I Theoretical Background and Literature Review

1. Arrangement of atoms

The distribution of molecules or atoms, when a liquid or a gas cools to the solid state, determines the type of solid. Depending on how the solid is formed, a compound can exist in one of the three following forms

1.1. Single crystal

The ordered crystalline phase is the stable state with the lowest internal energy (absolute thermal equilibrium). The solid in this state is called the single crystal form. It has an exact periodic arrangement of its building blocks (atoms or molecules).

1.2. Polycrystalline materials

Sometimes the external conditions existing during solidification (temperature, pressure, cooling rate) are such that the resulting materials have a periodic arrangement of atoms which is interrupted randomly along two-dimensional sections that can intersect, thus dividing a given volume of a solid into a number of smaller single-crystalline regions or grains. The size of these grains can be as small as several atomic spacings. Materials in this state do not have the lowest possible internal energy but are stable, being in sonamed (local thermal equilibrium).

1.3. Amorphous materials

These are polycrystalline materials. There exist, however, solid materials which never reach their equilibrium condition, e.g. glasses or amorphous materials. Molten glass is very viscous and its constituent atoms cannot come into a periodic order (i.e. reach equilibrium condition) rapidly enough as the mass cools. Glasses have a higher energy content than the corresponding crystals and can be considered as a frozen, viscous liquid. There is no periodicity in the arrangement of atoms (the periodicity is of the