Comparative Study Between Elective Double Cervical Cerclage versus Conventional Cerclage in cases of Cervical Insufficiency

Thesis

Submitted for partial fulfillment of Master Degree in Obstetrics and Gynecology

Presented by

Miral Mostafa Fotouh Salem
(M.B., B.Ch.) Alexandria University (2003)
Maternity Hospital (Alex.)

Supervised by

Dr. Alaa El Din Abd El Aziz El Guindy

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Magd El Din M. Mohammed

Professor of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohammed Abd El Aziz

Lecturer of Obstetrics and Gynecology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2010

المقارنة بين استخدام الربط المزدوج أو الربط الأحادي لعنق الرحم في حالات قصور عنق الرحم

ر سالة

توطئه للحصول على درجة الماجستير في التوليد وأمراض النساء

مقدمة من

طبيبه/ مير ال مصطفى فتوح سالم بكالوريوس الطب والجراحة العامة – جامعة الاسكندرية (2003) مستشفى الماتيرنيتيه – اسكندرية

تحت إشراف د/ علاء الدين عبد العزيز الجندي

أستاذ التوليد وأمراض النساء كلية الطب – جامعة عين شمس

د/ مجد الدين مجد الدين محمد

أستاذ التوليد وأمراض النساء كلية الطب – جامعة عين شمس

د/ أحمد محمد عبد العزيز

مدرس التوليد وأمراض النساء كلية الطب – جامعة عين شمس

> كلية الطب جامعة عين شمس

Contents

Contents

Subjects	
Abbreviations	I
• List of Tables	II
• List of Figures	
• Introduction	
Aim of the Work	6
• Review of Literature	
- The cervix	7
- Cervical insufficiency	16
- Infection and preterm birth	25
- Management of cervical insufficiency	37
- Cervical occlusion	61
Patients and Methods	69
• Results	77
• Discussion	94
• Summary	102
Conclusions and Recommendations	
• References	105
Arabic Summary	

Abbreviations

List of Abbreviations

CL : Cervical length

CRH : Corticotropin releasing hormone

FFN: Fetal fibronectin

 $\mathbf{H_2O_2}$: Hydrogen peroxide

ICSI: Intracytoplasmic sperm injection

IL : Interleukin

KOH : potassium hydroxide

MIAC: Microbial invasion of amniotic cavity

NICU: Neonatal intensive care unit

PMN: Polymorphonuclear neutrophils

PROM: Premature rupture of membranes

PTB: Preterm birth

PTD : Preterm delivery

PTL: Preterm labour

TAC: Trans abdominal cerclage

TAU: Trans abdominal Ultrasonography

TCO: Total cervical occlusion

TNF: Tumour necrosis factor

TVU : Trans vaginal Ultrasonography

🕏 List of tables

List of Tables

Table No.	Title	Page
Table (1)	Mean Cervical Length in the General	40
	Population	
Table (2)	Prediction of preterm delivery by	43
	ultrasonographic measurement of the	
	cervical length during early gestation	
Table (3)	Risk of Preterm Delivery (PTD) in	45
	Asymptomatic Women Based on	
	Sonographic Cervical Length, Fetal	
	Fibronectin (fFN) Testing, History of	
	PTD, or Combinations of Such	
	Predictors.	
Table (4)	Studies comparing management of	52
	women with incompetent cervix.	
Table (5)	Comparison between single cerclage	80
	and double cerclage groups as regard	
	maternal age.	
Table (6)	Distribution of the study population as	81
	regard gestational age at time of	
	operation.	

🕏 List of tables

Table No.	Title	Page
Table (7)	Comparison between both groups as regard gestational age at the time of operation	82
Table (8)	Comparison between both groups as regard number of previous preterm labor (PTL) <35w and/or second trimester abortion.	84
Table (9)	Comparison between both groups as regard number of living children.	86
Table (10)	Comparison between both groups as regard gestational age at delivery.	87
Table (11)	Comparison between both groups as regard average gestational age at delivery.	88
Table (12)	Comparison between single cerclage and double cerclage groups as regard PROM.	89
Table (13)	Comparison between single cerclage and double cerclage groups as regard PROM.	90
Table (14)	Comparison between both groups as regard NICU admission.	91
Table (15)	Comparison between single and double cerclage groups as regard mode of delivery.	92
Table (16)	Comparison between single and double cerclage groups as regard operative time.	93

🕏 List of Figures

List of figures

Fig. No.	Title	Page
Fig. (1)	The most common pathway of intrauterine	28
	infection is the ascending route	
Fig. (2)	Pathogenic mechanisms implicated in	31
	infection associated preterm labor	
Fig. (3)	Ultrasound of (a) a normal cervix and (b) a	46
	short cervix with funneling.	
Fig. (4)	The cervical mucus plug	62
Fig. (5)	Cervical mucus plug	64
Fig. (6)	The occlusion suture traps the mucus plug	65
Fig. (7)	Double cerclage.	72
Fig. (8)	The occlusion suture completely closes the	74
	external os.	
Fig. (9)	Shows the mean maternal age in both	80
	groups	
Fig. (10)	Shows distribution of cases according to	81
	gestational age at the time of operation	
Fig. (11)	Shows comparison between the 2 groups	83
	as regard gestational age at operation	

List of Figures

Fig. No.	Title	Page
Fig. (12)	Shows comparison between both groups as	85
	regard number of previous PTL and/or	
	abortion	
Fig. (13)	Shows a comparison between number of	86
	living children in single and double cerclage	
	groups.	
Fig. (14)	Shows a comparison between both groups as	87
	regard gestational age at delivery.	
Fig. (15)	Shows the mean gestational age at delivery in	88
	both groups	
Fig. (16)	Shows the occurrence of PROM in both	89
	groups.	
Fig. (17)	Shows comparison between both groups as	90
	regard neonatal birth weight.	
Fig. (18)	Shows rates of NICU admission in both	91
	groups.	
Fig. (19)	Shows a comparison between both groups in	92
	the mode of delivery.	
Fig. (20)	Shows a comparison between both groups in	93
	operative time.	

Acknowledgement

Many thanks to *ALLAH*, who granted me the ability to accomplish this work.

I would also like to express my deep thanks and sincere gratitude to *Prof. Dr. Ezz Eldin Azzam.*, Professor of Obstetrics and Gynecology, faculty of Medicine Ain Shams University for his generous help, valuable advice and guidance he gave me in the preparation of this study.

I would like to express my deep thanks & sincere gratitude to *Prof. Dr. Alaa El Din Abd El Aziz El Guindy*, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for the generous support he gave me during the preparation of this work. I am grateful to him for his guidance, helpful suggestion & *valuable* advice.

I am deeply grateful to *Prof. Dr. Magd El Din Mohammed*, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his encouragement, helpful suggestion, *valuable* advice and great help to complete this work.

I owe much to *Dr. Ahmed Mohammed Abd El Aziz*, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his helpful assistance, consideration and encouragement which were very helpful to me.

Actually no words are sufficient to express my love and faithful thanks to my Family.

Introduction

"Cervical insufficiency" is defined as recurrent 2nd or early 3rd trimester delivery caused by the inability of the uterine cervix to retain a pregnancy in the absence of contractions of labor (*Romero et al.*, 2006).

Cervical insufficiency is one of the important causes of recurrent abortion and preterm labor. Preterm labor is the most common cause of neonatal morbidity and mortality. Infants born preterm are at increased risk of a range of adverse neonatal outcomes, including chronic lung disease, severe brain injury, retinopathy of prematurity, necrotizing enterocolitis and neonatal sepsis (*Secher et al.*, 2007).

Cervical cerclage is a procedure in which sutures are inserted around the uterine cervix in women suspected to have cervical weakness. The first use of this technique was initially published by Lash and Lash in 1950, and it involved a complicated cervical repair procedure that could only be performed prior to pregnancy (*Noori et al.*, 2007).

In 1955 V. N. Shirodkar (professor of Midwifery and Gynecology at the Grant Medical College in Bombay, India) reported an alternative method that could be performed during pregnancy. It involved reflection of the bladder away from the

cervix, enabling insertion of a stitch above the level of the cardinal ligaments. A simpler less invasive operation described by Ian Mc Donald (from the Royal Melbourne Hospital) in 1957 has been adopted by many. This involves insertion of a purse-string suture around the vaginal cervix. These two methods of cerclage cannot be used effectively in women with a severely deficient or damaged cervix. In 1965, Benson and Durfee published an alternative method of cerclage requiring transabdominal insertion of a suture at the level of the internal cervical os. Many series of such sutures have been published since then (*Noori et al., 2007*).

Based on clinical indication, cervical cerclage can be classified as an elective procedure (based on previous history and/or investigation), a selective procedure (based on evidence obtained by ultrasound examination that shows shortening of the cervix) or an emergency procedure (when the cervix is dilated with the membranes seen or bulging through the cervical os) (*Yanamandra et al.*, 2006).

An association between infection and preterm delivery was established. The working hypothesis is that microorganisms in the lower genital tract (which maybe non-pathogenic in this environment) ascend into the uterus to cause inflammation and preterm birth (*Norman*, 2007).

In most women it is impossible to determine whether weakness of the cervix or ascending infection is the primary cause in those with a previous history of an apparently incompetent cervix. All the previous cerclage techniques only deals with the mechanical factor of insufficiency, without dealing with the biochemical factor (infection) which may be the initiator of cervical shortening and dilation (Secher et al., 2007).

There is a growing body of evidence that the cervix creates a barrier against infection. As most pregnancies continue to term despite the presence of opportunistic organisms with pathogenic potential in the vagina, it seems likely that local defense mechanisms are in operation within the amniotic fluid, fetal membranes, and the cervical mucus plug. The later, which becomes considerably thicker following conception, has been shown to be particularly important in this regard (*Noori et al.*, 2007).

In 2001, Hien et al. performed in vitro studies on cervical mucus plugs and demonstrated that intact cervical mucus plugs have antimicrobial activity against a wide range of gram-positive and gram-negative organisms and may contain diffusible factors with bactericidal properties (*Noori et al.*, 2007).

The mucus plug contains antibacterial, antifungal and antiviral products. In addition, innate and adaptive immune system appears to have a role (*Secher et al.*, 2007).

Total cervical occlusion (TCO) was first documented by Saling et al. in 1984 as an effective intervention for women at risk of preterm birth. The operation involved dissection of the external os epithelium in a similar fashion to conization. They then removed 2 cm of glandular epithelium lining the cervical canal. The raw area was sutured together to ensure adequate healing of opposed surfaces. As term drew closer, they attempted to recanalise the cervical canal by incising the scar tissue (*Noori et al., 2007*).

In the last years a simpler, less traumatic technique was introduced, whereby the external cervical os is occluded using a continuous, nonabsorbable suture. This is inserted at the time of internal os cerclage. Such a suture, lacking any significant mechanical strengthening function, act by maintaining the cervical mucus plug within the cervical canal for a greater proportion of the pregnancy, thereby reducing the risk of infection due to ascending organisms and, hence, preterm birth. So, the double cerclage deals with both problems of incompetence (mechanical factor and infection) (*Noori et al.*, 2007).

Several uncontrolled studies were performed over the last 5 years and they showed that the combined suture improves the obstetric outcome compared with the single suture. However, confirmation of the value of the procedure can only be achieved with an appropriately designed prospective randomized trial. Such a multicentre trial is now underway, led by Niels Secher and his group, in Copenhagen (*Noori et al.*, 2007).

Because of the importance of this issue and the difference it would make in the treatment of cervical incompetence, it was decided to perform a similar randomized controlled trial.