

Ain Shams University

Cairo-Egypt

Modification of algorithms for NP-
problems and implementing them using

Functional programming languages

A Dissertation
Submitted to the Mathematical Department-
Faculty of Science – Ain Shams University

In Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

In
Computer Science

Presented By
Niveen Samy Morckos Soliman

Supervised by

Prof. Dr. Sameh S. Daoud Prof. Dr. Fayed F.Ghaleb
Department of Mathematics Department of Mathematics
Faculty of Science Faculty of Science
Ain Shams University Ain Shams University

20١٠

 ٢

Acknowledgment

First of all, Thanks are to God, The most
beneficent and merciful.
I wish to express my deepest thanks and
appreciation to my supervisors, Prof. Dr.
Sameh Sami Daoud and Prof. Dr. Fayed
Fayek Mohamed Ghalip for helping and
guiding me during the preparation of this
thesis. Finally, I am grateful to my
family for their encouragement and their
help.

 ٣

Summary

The thesis contains four chapters and four
appendices. Chapter 1, titled by "An introduction to
NP-problems and functional programming
languages", this chapter consists of two sections.
Section 1, contains the basic definitions of P, NP and
NP-complete classes and how we can prove that a
problem is NP-complete problem. Section 2,
introduces what is the functional programming
languages paradigm and we introduce in precisely the
functional programming language Miranda, which we
use in our implementations. Chapter 2, has the title
"Approximation algorithms for NP-hard optimization
problems"; and consists of six sections. These sections
discuss the approximation algorithm concept and the
classes of the NP-optimization problems according to
their approximation ratios. Also They discuss that
there are some problems hard to approximate with
any constant approximation ratio using the
inapproximation concept. Chapter 3, has the title "Set
Cover problem"; and consists of two sections. Section
1, discusses the Set Cover problem (SC), its definition
and some approximation algorithms for it. Section 2,
contains a modification to an algorithm for
unweighted SC problem that uses a new technique
(flow algorithm), we generalize this algorithm for the
weighted SC problem. Chapter 4, has the title "
Minimum Membership Set Cover problem" and
consists of two sections. Section 1 discusses the
Minimum Membership Set Cover problem (MMSC),
its definition, an approximation algorithm for it.

 ٤

Section 2, contains a new greedy algorithm for
MMSC problem and we prove that this algorithm get
a solution with approximation ratio in order Ο(log n).
Finally, Appendix A contains the Miranda
implementation of flow algorithm for WSC problem.
Appendix B contains the Miranda implementation of
the greedy algorithm for WSC problem. Appendix C
contains the Miranda implementation of our new
algorithm for MMSC problem. Appendix D, contains
Java classes which create the Random instances for
WSC and MMSC problems.

 ٥

The conclusion

We conclude that NP-hard problems have
many applications in the world and it is
important to study it. The approximation
algorithm concept is useful to give a
solution close to the optimal in time
polynomial instead of trying to get the
optimal solution, since there is no algorithm
gives the optimal solution in time
polynomial. We modify an approximation
algorithm for unweighted Set Cover
problem that uses a new technique (flow
graph algorithm), we generalize this
algorithm for the weighted Set Cover
problem. We also make new greedy
algorithm for Minimum Membership Set
Cover problem and prove that this
algorithm gives a solution with
approximation ratio in order O(log n).
In future we will study and try to improve
approximation algorithms for NP-hard
problems and study flow graph technique
more.

 ٦

Contents

Acknowledgements

Summary

1 An introduction to NP-problems and functional
programming languages
 1.1 NP-hard
problems………………………………………………….1
1.1.1 NP-class……………………………………………………..2
1.1.2 The relationship between P,NP and NPC………………...9
1.1.3 Algorithm design techniques and concepts………………..9
1.2 Functional programming
Languages……………………………..10
1.2.1 Functional and imperative programming languages…….10
1.2.2 Features of functional languages…………………………11
1.2.3 Functional programming Languages…………………......12
1.2.4 Miranda……………………………………………………14

2 Approximation algorithms for NP-hard optimization
problems
2.1 Concept of approximation algorithms…………………………..
.18
2.2 Polynomial approximation
schemes……………………………...24
2.3 Classes of optimization problems………………………………..
.25
2.3.1 Constant factor approximation ratio……………………..28
2.3.2 Poly-logarithmic approximation ratio……………………28
2.4 Stability of approximation……………………………………...…29
2.5 Dual approximation algorithms……………………………...…...32
2.6 Inapproximation………………………………………...................34
2.6.1 Approximation preserving reduction…………………….35
2.6.2 Probabilistically checkable proofs………………………..36

 ٧

3 Set Cover problem
3.1 Set Cover………………………………………………..................40
3.1.1 Approximation of SC problem…………………………….41
3.1.2 Relaxation to linear programming problem……………...41
3.1.3 Greedy algorithm for SC…………………………………..42
3.1.4 Local improvement for SC………………………………...47
3.1.5 Special cases of SC problem……………………………….48
3.1.6 Weighted SC problem……………………………………...52

3.2 New efficient heuristic algorithm for weighted SC problem..55
3.2.1 SC conversion to minimum flow graph………………....55
3.2.2 Greedy algorithm for WSC………………………………60
3.2.3 Miranda implementation for flow graph algorithm…....61

4 Minimum Membership Set Cover problem
4.1 Minimum Membership SC problem…………………………..65
4.1.1 MMSC and Interference in Cellular Network……………...65
4.1.2 MMSC and consecutive one property……………………....67
4.2 New greedy algorithm for MMSC problem………………..…. 68
4.2.1 Complexity of MMSC…………………………………….69
4.2.2 Relaxation to Linear programming problem……………70
4.2.3 Our new greedy algorithm………………………………..71
4.2.4 Miranda implementation of greedy algorithm for MMSC.77

References…………………………………………………………………. 80

Appendices

A Miranda script implementation of flow algorithm for WSC……….83
B Miranda script implementation of Greedy algorithm for WSC……87
C Miranda script implementation of Greedy algorithm for MMSC…88
D Creation Random instances for MMSC and WSC using JAVA……92

 ٨

Chapter 1

An introduction to NP-problems and
functional programming languages

1.1 NP- hard problems

 A problem is a general question to be answered, and usually
has several parameters. A problem is described by giving a
general description of all its parameters and a statement of
what properties the answer is required to satisfy.

In this thesis we shall mainly discuss two types of problems:

1- decision problems
2- Optimization problems
Their definition according to [11] is as follows:

Definition 1.1 A decision problem is a triple (L, U, ∑)
where ∑ is an alphabet and L ≤ U ≤ ∑*. An algorithm A
solves (decides) it, if for every x ∈ U, (i) A (x) = 1, if x ∈ L,
and (ii) A (x) = 0, if x ∈ U- L (x ∉L).

Example 1.1

K-Clique Problem; decide for a given graph G and a positive
integer k, whether G contains a complete graph Kk of k
vertices as a sub-graph of G
Input: A positive integer k and a graph G
Output: "yes" if G contains a clique of size k, "no" otherwise.

Definition 1.2. An optimization problem is a 7-tuple U=(∑I , ∑O

, L , LI , M, Value , Goal), where
(i) ∑I is an alphabet, called the input alphabet of U,
(ii) ∑O is an alphabet, called the output alphabet of U,

 ٩

(iii) L ⊆ ∑I
* is the language of feasible problem instances,

(iv) LI ⊆ L is the language of the (actual) problem
instances of U,

(v) M is a function from L to Pot(∑O
*), ∀ x∈L, M(x) is

the set of feasible solutions for x,
(vi) Value is a function, such that ∀ (u,x), where u ∈

M(x) for some x∈L, it assigns a positive real number
Value(u,x),

(vii) Goal ∈ { minimum , maximum }

Example 1.2: Minimum vertex cover problem

Input: A graph G=(V,E), and
Constraint: M(G)= { S ⊆ V | that every edge of E is adjacent
to at least one vertex of S },
Value : ∀ S ∈M(G), Value(S,G)=|S|,
Goal: Minimum.

1.1.1 NP-class

 To discuss the NP-class we need the notion of Deterministic
Turing Machine DTM and Nondeterministic Turing Machine
NDTM. For a good review of this notion see [19]. Now we
define the class P as follows:

 P = {L | there is a polynomial time DTM program M for
 which L=LM }.

 Therefore P is the class of all problems which can be solved
by a DTM program in a time polynomial on the input size, (i.e),
if the input size is n, then the worst-case running time is O(nc

)
for a constant c. Any problem in P is considered "tractable".

 ١٠

Any DTM can be figured as follows:

 Read-write head

 Tape

 -3 -2 -1 0 1 2 3
 Figure 1.1 Schematic representation of a deterministic
 one-tape Turing machine

The class NP is defined as follows:

 NP = { L | there is a polynomial time Nondeterministic (one-
tape) Turing Machine program M for which LM = L } or,

 It is the class of problems whose solutions can be verified in
time polynomial in the size of the input.
The Nondeterministic Turing machine (NDTM) model has
exactly the same structure as a DTM, except that it is
augmented with a guessing module having its own write – only
head as illustrated schematically in figure 1.2.

Finite
state
control

 ١١

F(x)

Inut
for L2

Yes or no

Answer for L2 on
f(x)=answer for L1 on x

 Guessing head
 tape Read-write head

 -3 -2 -1 0 1 2 3
 Figure 1.2 Schematic representation of a nondeterministic one-
tape Turing machine

 We will define now the transformations (Reductions) between
Decision problems polynomial time transformation f from L1 to
L2 (L1 ≤P L2).

• F transforms the input for L1 into an input for L2 such
that the transformed input is a yes-input for L2 if and
only if the original input was a yes-input for L1.

• F is computable in polynomial time.

 Figure 1.3

Theorem 1.1: if L1 ≤P L2 and L2 ∈ P, then L1∈ P.

If there exist polynomial time algorithm for L2 , then there is
Polynomial time algorithm for L1.
If there is not Polynomial time algorithm for L1, then there
can not be a Polynomial time algorithm for L2 .
Fact: The relation ≤P is transitive, i.e. L1 ≤P L2 and L2 ≤P L3
implies that L1 ≤P L3.

Transform
F

Algorithm
for L2

X
Input

for
L1

Finite state
control

Guessing
module

 ١٢

We shall use this fact in chapter 2, 3, and 4.

Definition 1.3: A decision problem L is NP-complete (NPC)
if:
1. L∈NP, and
2. for every L'∈NP, L' ≤P L.

 To prove that a problem L is NPC it is sufficitiont to get a
known NPC problem L' and show L' ≤P L.
The first problem which was proved to be an NP-complete
is the Satisfiability problem (SAT) by [Cook's theorem],
which is

Theorem 1.2 (Cook's theorem) Satisfiability is an NP-
complete, see [19] for the proof.

 By this theorem we can make sequence of reductions to
prove that many problems are NP-complete. For example
the following figure is a tree of transformations between
NP-complete problems.

 Figure 1.4

 SAT

3SAT

HC clique

TSP VC

 ١٣

See [19] for details
If we want to show that a problem U is an NPC, then we (i)
show that U ∈ NP (ii) select a known NPC problem L' and show
that L' ≤P L.

Example 1.3

 In this example we prove that the vertex cover is an NP-
complete problem and also we study the relation between it and
the two NP-complete problems the clique and the independent
set in a certain graph G. We first define the three problems.
The vertex cover problem (VC):
Instance: a graph G=(V,E) and a positive integer k ≤ |V|
Output: Decide whether there is a subset V' ⊆ V of size ≤ k
such that each edge in E has at least one endpoint in V'.

The Clique problem:
Instance: a graph G=(V,E) and a positive integer k ≤ |V|
Output: Decide whether G have a Clique of size ≥ k (i.e. a
subset V' ⊆ V of size at least k such that V' make a complete
graph).

The independent set problem (IS):
Instance : a graph G=(V,E) and a positive k ≤ |V|.
Output: Decide whether G have an independent set of size ≥ k
(i.e. a subset V' ⊆ V of size at least k such that G has no edge
between any pair).

The relationships between the above three problems are as
follows:
For any graph G=(V,E) and a subset V' ⊆ V, the following
statements are equivalent:

(a) V' is a vertex cover for G.
(b) V-V' is an independent set for G.
(c) V-V' is a clique in the complement Gc =(V,Ec

) with
Ec ={{u,v}: u,v ∈ V and {u,v} ∉E}.

 These relationships between them make it a trivial matter to
transform any one of these problems to each of the other two
problems. This implies that the NP-completeness of all the three

 ١٤

problems will follow as an immediate consequence of proving
that any one of them is NP-complete.
The following theorem proves that VC is NP-complete

Theorem 1.3. Vertex Cover is a NP-complete.
Proof:
 It is easy to show that VC ∈ NP, since a nondeterministic
algorithm needs only to guess a subset of vertices and check in a
polynomial time whether that this subset contains at least one
endpoint of every edge and that its size is an appropriate
number. We first transform 3SAT to VC. Let U={u1,u2,….,un}
and C={c1,c2,……,cm} be an instance of 3SAT. Now we should
construct a graph G=(V,E) and a positive integer k, from this
instance and prove that it has vertex cover of size k if and only
if C is satisfiable.
The constructing graph will be as follows:
For each variable ui ∈ U, there is truth-setting component Ti =
(Vi,Ei), with Vi ={ui,ui'} (where ui' is the complement of ui) and
Ei = {{ui,ui'}}, that is, each two vertices joined by a single edge.
For each clause cj ∈ C, there is Sj =(Vj',Ej') , consisting of three
vertices and three edges joining them to form a triangle:
 Vj' = {a1[j],a2[j],a3[j]} , Ej' = {{a1[j],a2[j]}, {a1[j],a3[j]} ,
{a2[j],a3[j]}}
Note that any vertex cover will have to contain at least two
vertices from Vj' in order to cover the edges in Ej'.
For each clause cj∈C, let the three literals in cj be denoted by xj,
yj, and zj. Then the communication edges emanating from Sj are
given by:
 Ej''={{a1[j],xj},{a2[j],yj},{a3[j],zj}}
The graph now is completed as follows, G=(V,E), where V=(

U
n

i 1=

Vi) ∪ (U
m

j 1=

 Vj') and E=(U
n

i 1=

Ei) ∪ (U
m

j 1=

Ej') ∪ (U
m

j 1=

Ej'').

The following figure illustrates the construction of an instance
of VC from the instance U={u1,…,u4},
C={{u1',u2,u4'},{u1,u3',u4'}}

 ١٥

 u1 u1' u2 u2' u3 u3' u4 u4'

 a2[1]
 a2[2]

a1[1] a3[[1] a1[2] a3[2]

 Figure 1.5. vertex cover instance constructed from instance
3SAT instance(U={u1,…,u4}, C={{u1',u2,u4'},{u1,u3',u4'}})

 Now we will show that C is satisfiable if and only if G has a
vertex cover of size k or less by setting k=n + 2m. Firstly,
suppose that V' ⊆ V is a vertex cover for G with |V'| ≤ k. V'
must contain at least one vertex from Ti and at least two
vertices from each Sj. since this gives a total of at least n+2m=k
vertices, from this vertex cover we can get a truth assignment t:
U {True,False}. We set t(ui)=True if ui ∈V' and t(ui)=False if
ui' ∈V'. To prove that this assignment satisfies the clauses in C,
consider the three edges in Ej'', only two of those edges can be
covered by vertices from Vj' ∩ V', so one of them must be
covered by a vertex from some Vi that belongs to V'. But that
implies the corresponding literal, either ui or ui', from clause cj
is true under the truth assignment t, and hence clause cj is
satisfied by t. Because this holds for every cj ∈C, it follows that
t is a satisfying truth assignment for C. conversely, suppose that
t : U {True,False} is a satisfying truth assignment for C. The
corresponding vertex cover V' includes one vertex from each Ti
and two vertices from each Sj. The vertex from Ti in V' is ui if
t(ui)=True and is ui' if t(ui)=False. This ensures that at least one
of the three edges from each set Ej'' is covered, because t
satisfies each clause cj. Now we need only select endpoints from
Sj of the other two edges in Ej'', which gives the required vertex
cover.

