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Summary 
 
 

The thesis contains four chapters and four 
appendices. Chapter 1, titled by "An introduction to 
NP-problems and functional programming 
languages", this chapter consists of two sections. 
Section 1, contains the basic definitions of P, NP and 
NP-complete classes and how we can prove that a 
problem is NP-complete problem. Section 2, 
introduces what is the functional programming 
languages paradigm and we introduce in precisely the 
functional programming language Miranda, which we 
use in our implementations. Chapter 2, has the title 
"Approximation algorithms for NP-hard optimization 
problems"; and consists of six sections. These sections 
discuss the approximation algorithm concept and the 
classes of the NP-optimization problems according to 
their approximation ratios. Also They discuss that 
there are some problems hard to approximate with 
any constant approximation ratio using the 
inapproximation concept. Chapter 3, has the title "Set 
Cover problem"; and consists of two sections. Section 
1, discusses the Set Cover problem (SC), its definition 
and some approximation algorithms for it. Section 2, 
contains a modification to an algorithm for 
unweighted SC problem that uses a new technique 
(flow algorithm), we generalize this algorithm for the 
weighted SC problem. Chapter 4, has the title " 
Minimum Membership Set Cover problem" and 
consists of two sections. Section 1 discusses the 
Minimum Membership Set Cover problem (MMSC), 
its definition, an approximation algorithm for it. 
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Section 2, contains a new greedy algorithm for 
MMSC problem and we prove that this algorithm get 
a solution with approximation ratio in order Ο(log n).  
Finally, Appendix A contains the Miranda 
implementation of flow algorithm for WSC problem. 
Appendix B contains the Miranda implementation of 
the greedy algorithm for WSC problem. Appendix C 
contains the Miranda implementation of our new 
algorithm for MMSC problem. Appendix D, contains 
Java classes which create the Random instances for 
WSC and MMSC problems. 
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The conclusion 
 
 

We conclude that NP-hard problems have 
many applications in the world and it is 
important to study it. The approximation 
algorithm concept is useful to give a 
solution close to the optimal in time 
polynomial instead of trying to get the 
optimal solution, since there is no algorithm 
gives the optimal solution in time 
polynomial. We modify an approximation 
algorithm for unweighted Set Cover 
problem that uses a new technique (flow 
graph algorithm), we generalize this 
algorithm for the weighted Set Cover 
problem. We also make new greedy 
algorithm for Minimum Membership Set 
Cover problem and prove that this 
algorithm gives a solution with 
approximation ratio in order O(log n). 
In future we will study and try to improve 
approximation algorithms for NP-hard 
problems and study flow graph technique 
more. 
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Chapter 1 
 

 
An introduction to NP-problems and 
functional programming languages 
 

1.1 NP- hard problems 
 
    A problem is a general question to be answered, and usually 
has several parameters. A problem is described by giving a 
general description of all its parameters and a statement of 
what properties the answer is required to satisfy. 
 
In this thesis we shall mainly discuss two types of problems: 
 
1- decision problems 
2- Optimization problems 
Their definition according to [11] is as follows: 
 
Definition 1.1    A decision problem is a triple ( L, U, ∑ ) 
where ∑ is an alphabet and L ≤ U ≤ ∑*. An algorithm  A  
solves ( decides ) it, if for every x ∈ U, (i) A (x) = 1, if x ∈ L, 
and (ii) A (x) = 0, if x ∈ U- L ( x ∉L). 
 
Example 1.1 
 
K-Clique Problem; decide for a given graph G and a positive 
integer k, whether G contains a complete graph Kk  of k 
vertices as a sub-graph of G 
Input: A positive integer k and a graph G 
Output: "yes" if G contains a clique of size k, "no" otherwise. 
 
Definition 1.2. An optimization problem is a 7-tuple U=(∑I  , ∑O 

,  L , LI  , M, Value , Goal), where 
(i) ∑I is an alphabet, called the input alphabet of U, 
(ii) ∑O is an alphabet, called the output alphabet of U, 
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(iii) L ⊆ ∑I
*  is the language of feasible problem instances, 

(iv) LI  ⊆ L is the language of the (actual) problem 
instances of U, 

(v) M is a function from L to Pot(∑O
*  ), ∀ x∈L, M(x) is 

the set of feasible solutions for x, 
(vi) Value is a function, such that ∀ (u,x), where u ∈ 

M(x) for some x∈L, it assigns a positive real number 
Value(u,x), 

(vii) Goal ∈ { minimum , maximum } 
 
 
Example 1.2: Minimum vertex cover problem 
 
Input: A graph G=(V,E), and 
Constraint: M(G)= { S ⊆ V | that every edge of E is adjacent 
to at least one vertex of S }, 
Value : ∀ S ∈M(G), Value(S,G)=|S|, 
Goal: Minimum. 
 

1.1.1  NP-class  
     
   To discuss the NP-class we need the notion of Deterministic 
Turing Machine DTM and Nondeterministic Turing Machine 
NDTM. For a good review of this notion see [19]. Now we 
define the class P as follows: 
 
          P = {L | there is a polynomial time DTM program M for  
                        which L=LM }.  
 
   Therefore P is the class of all problems which can be solved 
by a DTM program in a time polynomial on the input size, (i.e), 
if the input size is n, then the worst-case running time is O(nc

 ) 
for a constant c. Any problem in P is considered "tractable". 
 
 
 
 
 
 
 



 ١٠

 
Any DTM can be figured as follows: 
 
 
 
    Read-write head 
 
 
 
          Tape              
 
 
 
          -3     -2       -1          0              1         2        3          
           Figure 1.1 Schematic representation of a deterministic 
                              one-tape Turing  machine 
 
 
The class NP is defined as follows: 
 
  NP = { L | there is a polynomial time Nondeterministic (one-
tape) Turing Machine program M for which LM  = L } or, 
 
    It is the class of problems whose solutions can be verified in 
time polynomial in the size of the input. 
The Nondeterministic Turing machine (NDTM) model has 
exactly the same structure as a DTM, except that it is 
augmented with a guessing module having its own write – only 
head as illustrated schematically in figure 1.2. 
 
 
 
 
 
 
 
 
 
 
 

Finite 
state 
control 



 ١١

F(x)

Inut 
for L2 

Yes or no 

Answer for L2 on 
f(x)=answer for L1 on x 

 
 
 
 
 
 
                            Guessing head                                                 
           tape                                                                Read-write head 
 
 
 
       -3            -2       -1             0           1                2         3  
       Figure 1.2 Schematic representation of a nondeterministic one-
tape Turing machine 
 
   We will define now the transformations (Reductions) between 
Decision problems polynomial time transformation f from L1 to 
L2 (L1 ≤P L2). 
 

• F transforms the input for L1 into an input for L2 such 
that the transformed input is a yes-input for L2 if and 
only if the original input was a yes-input for L1. 

• F is computable in polynomial time. 
 
 
 
 
 
 

 
                       Figure 1.3 
 
Theorem 1.1: if L1 ≤P L2 and L2 ∈ P, then L1∈ P. 
 
If there exist polynomial time algorithm for L2 , then there is 
Polynomial time algorithm for  L1. 
If there is not Polynomial time algorithm for L1, then there 
can not be a Polynomial time algorithm for L2 . 
Fact:  The relation ≤P is transitive, i.e. L1 ≤P L2 and L2 ≤P L3 
implies that L1 ≤P L3. 

Transform  
F 

Algorithm 
for L2  

X 
Input 

for 
L1 

Finite state 
control 

Guessing 
module 
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We shall use this fact in chapter 2, 3, and 4. 
 
Definition 1.3: A decision problem L is NP-complete (NPC) 
if: 
1. L∈NP, and 
2. for every L'∈NP, L' ≤P L. 
 
   To prove that a problem L is NPC it is sufficitiont to get a 
known NPC problem L' and show L' ≤P L. 
The first problem which was proved to be an NP-complete 
is the Satisfiability problem (SAT) by [Cook's theorem], 
which is 
 
Theorem 1.2 (Cook's theorem) Satisfiability is an NP-
complete, see [19] for the proof. 
 
   By this theorem we can make sequence of reductions to 
prove that many problems are NP-complete. For example 
the following figure is a tree of transformations between 
NP-complete problems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        
 
 
                                       Figure 1.4 

  SAT 

3SAT  

HC clique 

TSP  VC  
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See [19] for details 
If we want to show that a problem U is an NPC, then we (i) 
show that U ∈ NP (ii) select a known NPC problem L' and show 
that L' ≤P L. 

 
Example 1.3 

 
   In this example we prove that the vertex cover is an NP-
complete problem and also we study the relation between it and 
the two NP-complete problems the clique and the independent 
set in a certain graph G. We first define the three problems. 
The vertex cover problem (VC): 
Instance: a graph G=(V,E) and a positive integer k ≤ |V| 
Output: Decide whether there is a subset V' ⊆ V of size ≤ k 
such that each edge in E has at least one endpoint in V'. 
 
The Clique problem: 
Instance: a graph G=(V,E) and a positive integer k ≤ |V| 
Output: Decide whether G have a Clique of size ≥ k (i.e. a 
subset V' ⊆ V of size at least k such that V' make a complete 
graph). 
 
The independent set problem (IS): 
Instance : a graph G=(V,E) and a positive k ≤ |V|. 
Output: Decide whether G have an independent set of size ≥ k 
(i.e. a subset V' ⊆ V of size at least k such that G has no edge 
between any pair). 
 
The relationships between the above three problems are as 
follows: 
For any graph G=(V,E) and a subset V' ⊆ V, the following 
statements are equivalent: 

(a) V' is a vertex cover for G. 
(b) V-V' is an independent set for G. 
(c) V-V' is a clique in the complement Gc =(V,Ec

 ) with 
Ec ={{u,v}: u,v ∈ V and {u,v} ∉E}. 

  These relationships between them make it a trivial matter to 
transform any one of these problems to each of the other two 
problems. This implies that the NP-completeness of all the three 
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problems will follow as an immediate consequence of proving 
that any one of them is NP-complete. 
The following theorem proves that VC is NP-complete 
 
Theorem 1.3. Vertex Cover is a NP-complete. 
Proof: 
   It is easy to show that VC ∈ NP, since a nondeterministic 
algorithm needs only to guess a subset of vertices and check in a 
polynomial time whether that this subset contains at least one 
endpoint of every edge and that its size is an appropriate 
number. We first transform 3SAT to VC. Let U={u1,u2,….,un} 
and C={c1,c2,……,cm} be an instance of 3SAT. Now we should 
construct a graph G=(V,E)  and a positive integer k, from this 
instance and prove that it has vertex cover of size k if and only 
if C is satisfiable. 
The constructing graph will be as follows: 
For each variable ui ∈ U, there is truth-setting component Ti = 
(Vi,Ei), with Vi ={ui,ui'} (where ui' is the complement of ui) and 
Ei = {{ui,ui'}}, that is, each two vertices joined by a single edge. 
For each clause cj ∈ C, there is Sj =(Vj',Ej') , consisting of three 
vertices and three edges joining them to form a triangle: 
     Vj' = {a1[j],a2[j],a3[j]} , Ej' = {{a1[j],a2[j]}, {a1[j],a3[j]} , 
{a2[j],a3[j]}} 
Note that any vertex cover will have to contain at least two 
vertices from Vj' in order to cover the edges in Ej'. 
For each clause cj∈C, let the three literals in cj be denoted by xj, 
yj, and zj. Then the communication edges emanating from Sj are 
given by: 
    Ej''={{a1[j],xj},{a2[j],yj},{a3[j],zj}} 
The graph now is completed as follows, G=(V,E), where V=( 

U
n

i 1=

Vi) ∪ (U
m

j 1=

 Vj') and E=(U
n

i 1=

Ei) ∪ (U
m

j 1=

Ej') ∪ (U
m

j 1=

Ej''). 

The following figure illustrates the construction of an instance 
of VC from the instance U={u1,…,u4}, 
C={{u1',u2,u4'},{u1,u3',u4'}} 
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 u1       u1'     u2      u2'    u3          u3'      u4            u4' 
                                                                                                                                        
                       
                                                                a2[1]                                                            
        a2[2] 

 
 
 
a1[1]                 a3[[1]                 a1[2]               a3[2] 
    
        Figure 1.5. vertex cover instance constructed from instance 
3SAT instance(U={u1,…,u4}, C={{u1',u2,u4'},{u1,u3',u4'}}) 
 
   Now we will show that C is satisfiable if and only if G has a 
vertex cover of size k or less by setting k=n + 2m. Firstly, 
suppose that V' ⊆ V is a vertex cover for G with |V'| ≤ k. V' 
must contain at least one vertex from Ti and at least two 
vertices from each Sj. since this gives a total of at least n+2m=k 
vertices, from this vertex cover we can get a truth assignment t: 
U {True,False}. We set t(ui)=True if ui ∈V' and t(ui)=False if 
ui' ∈V'. To prove that this assignment satisfies the clauses in C, 
consider the three edges in Ej'', only two of those edges can be 
covered by vertices from Vj' ∩ V', so one of them must be 
covered by a vertex from some Vi that belongs to V'. But that 
implies the corresponding literal, either ui  or ui', from clause cj 
is true under the truth assignment t, and hence clause cj is 
satisfied by t. Because this holds for every cj ∈C, it follows that 
t is a satisfying truth assignment for C. conversely, suppose that 
t : U  {True,False} is a satisfying truth assignment for C. The 
corresponding vertex cover V' includes one vertex from each Ti 
and two vertices from each Sj. The vertex from Ti in V' is ui if 
t(ui)=True and is ui' if t(ui)=False. This ensures that at least one 
of the three edges from each set Ej'' is covered, because t 
satisfies each clause cj. Now we need only select endpoints from 
Sj of the other two edges in Ej'', which gives the required vertex 
cover. 


