Ain Shams University
Cairo-Egypt

Modification of algorithms for NP-
problems and implementing them using
Functional programming languages

A Dissertation
Submitted to the Mathematical Department-
Faculty of Science — Ain Shams University

In Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy
In
Computer Science
Presented By

Niveen Samy Morckos Soliman

Supervised by

Prof. Dr. Sameh S. Daoud Prof. Dr. Fayed F.Ghaleb
Department of Mathematics ~ Department of Mathematics
Faculty of Science Faculty of Science
Ain Shams University Ain Shams University

20)

Acknowledgment

First of all, Thanks are to God, The most
beneficent and merciful.

I wish to express my deepest thanks and
appreciation to my supervisors, Prof. Dr.
Sameh Sami Daoud and Prof. Dr. Fayed
Fayek Mohamed Ghalip for helping and
guiding me during the preparation of this
thesis. Finally, I am grateful to my
family for their encouragement and their
help.

Summary

The thesis contains four chapters and four
appendices. Chapter 1, titled by "An introduction to
NP-problems and functional programming
languages', this chapter consists of two sections.
Section 1, contains the basic definitions of P, NP and
NP-complete classes and how we can prove that a
problem is NP-complete problem. Section 2,
introduces what is the functional programming
languages paradigm and we introduce in precisely the
functional programming language Miranda, which we
use in our implementations. Chapter 2, has the title
""Approximation algorithms for NP-hard optimization
problems''; and consists of six sections. These sections
discuss the approximation algorithm concept and the
classes of the NP-optimization problems according to
their approximation ratios. Also They discuss that
there are some problems hard to approximate with
any constant approximation ratio using the
inapproximation concept. Chapter 3, has the title "Set
Cover problem"; and consists of two sections. Section
1, discusses the Set Cover problem (SC), its definition
and some approximation algorithms for it. Section 2,
contains a modification to an algorithm for
unweighted SC problem that uses a new technique
(flow algorithm), we generalize this algorithm for the
weighted SC problem. Chapter 4, has the title "
Minimum Membership Set Cover problem" and
consists of two sections. Section 1 discusses the
Minimum Membership Set Cover problem (MMSC),
its definition, an approximation algorithm for it.

Section 2, contains a new greedy algorithm for
MMSC problem and we prove that this algorithm get
a solution with approximation ratio in order O(log n).
Finally, Appendix A contains the Miranda
implementation of flow algorithm for WSC problem.
Appendix B contains the Miranda implementation of
the greedy algorithm for WSC problem. Appendix C
contains the Miranda implementation of our new
algorithm for MMSC problem. Appendix D, contains
Java classes which create the Random instances for
WSC and MMSC problems.

The conclusion

We conclude that NP-hard problems have
many applications in the world and it is
important to study it. The approximation
algorithm concept is wuseful to give a
solution close to the optimal in time
polynomial instead of trying to get the
optimal solution, since there is no algorithm
gives the optimal solution in time
polynomial. We modify an approximation
algorithm for unweighted Set Cover
problem that uses a new technique (flow
graph algorithm), we generalize this
algorithm for the weighted Set Cover
problem. We also make new greedy
algorithm for Minimum Membership Set
Cover problem and prove that this
algorithm gives a solution with
approximation ratio in order O(log n).

In future we will study and try to improve
approximation algorithms for NP-hard
problems and study flow graph technique
more.

Contents

Acknowledgements

Summary

1 An introduction to NP-problems and functional
programming languages

1.1 NP-hard
91 0] 0] 3 1 1 1
0 O A T TPt 2
1.1.2 The relationship between P,NP and NPC..................... 9
1.1.3 Algorithm design techniques and concepts.................... 9
1.2 Functional programming
Languages......ccovveviiniiiniiinicinncnnn 10
1.2.1 Functional and imperative programming languages....... 10
1.2.2 Features of functional languages..........ccccovvevviniennnnn. 11
1.2.3 Functional programming Languages..........c.cccccevevunnne 12
1.2.4 Miranda.....cccooeeiiiiiniiniiiiiiniiiiiieiiiiieiieiinecieciacnns 14

2 Approximation algorithms for NP-hard optimization
problems

2.1 Concept of approximation algorithms...........ccccevievineinnnnnen.
18

2.2 Polynomial approximation

schemes......cooevviiiiiiiiiiiniininnne 24

2.3 Classes of optimization problems.........cc.ccoeviiviiiiiiiiieiinnnnen
25

2.3.1 Constant factor approximation ratio..........c.ceceevevnneen 28
2.3.2 Poly-logarithmic approximation ratio........................ 28

2.4 Stability of approximation..........ccveevieiiniiiiiiiiiiiiiiiiieinenn. 29
2.5 Dual approximation algorithms .. 32
2.6 Inapproximation........... P, 2 |
2.6.1 Approximation preservmg reductlon 35

2.6.2 Probabilistically checkable proofs.........cc.ccceeineinnnen. 36

3 Set Cover problem

R BT A O 1) OO | ||
3.1.1 Approximation of SC problem..........ccceeeviveiiiniiinnnenn. 41
3.1.2 Relaxation to linear programming problem.................. 41
3.1.3 Greedy algorithm for SC.........cccovviiiiiiniiiiiiiiniiininnnn 42
3.1.4 Local improvement for SC.......cccceviiiiiiiiiiniiniinecnnnn 47
3.1.5 Special cases of SC problem..........ccccvvveiiiniiinniiininnn. 48
3.1.6 Weighted SC problem........cccccceviiiiniiiiiiiiiiiiiieiiecnnn 52

3.2 New efficient heuristic algorithm for weighted SC problem..55
3.2.1 SC conversion to minimum flow graph...................... 55
3.2.2 Greedy algorithm for WSC.......cccvvvviiiiiiiiiiiinnnnnne. 60
3.2.3 Miranda implementation for flow graph algorithm.......61

4 Minimum Membership Set Cover problem

4.1 Minimum Membership SC problem...........ccccceeviiiinninnnn 65

4.1.1 MMSC and Interference in Cellular Network.................. 65

4.1.2 MMSC and consecutive one property.....ccceeeeeereecencecnnes 67

4.2 New greedy algorithm for MMSC problem.............cccuvueeees 68

4.2.1 Complexity of MMSC....cccoitiiiiniiiiiiiniiieiiiieciecnennnn 69

4.2.2 Relaxation to Linear programming problem............... 70

4.2.3 Our new greedy algorithm............coeevviiiiiniiiiinnninnnn 71

4.2.4 Miranda implementation of greedy algorithm for MMSC.77
References....cceveiuiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieicieiieeneeeaean, 80
Appendices

A Miranda script implementation of flow algorithm for WSC.......... 83
B Miranda script implementation of Greedy algorithm for WSC...... 87
C Miranda script implementation of Greedy algorithm for MMSC...88
D Creation Random instances for MMSC and WSC using JAVA...... 92

Chapter 1

An introduction to NP-problems and
functional programming languages

1.1 NP- hard problems

A problem is a general question to be answered, and usually
has several parameters. A problem is described by giving a
general description of all its parameters and a statement of
what properties the answer is required to satisfy.

In this thesis we shall mainly discuss two types of problems:

1- decision problems
2- Optimization problems
Their definition according to [11] is as follows:

Definition 1.1 A decision problem is a triple (L, U, })
where) is an alphabet and L < U <) *. An algorithm A
solves (decides) it, if for everyx € U, () A (x)=1,ifx € L,
and (ii) A (x) =0, ifx € U- L (x ¢L).

Example 1.1

K-Clique Problem; decide for a given graph G and a positive
integer k, whether G contains a complete graph Ky of k
vertices as a sub-graph of G

Input: A positive integer k and a graph G

Output: "yes" if G contains a clique of size k, '"no" otherwise.

Definition 1.2. An optimization problem is a 7-tuple U=} , >0
, L,L;,M, Value, Goal), where

(i) Y1 is an alphabet, called the input alphabet of U,

(ii) Y o is an alphabet, called the output alphabet of U,

(iili) L <Y is the language of feasible problem instances,

(iv) Ly < L is the language of the (actual) problem
instances of U,

) M is a function from L to Pot(Yo), V xeL, M(x) is
the set of feasible solutions for x,

(vi) Value is a function, such that V (u,x), where u e
M(x) for some xeL,, it assigns a positive real number
Value(u,x),

(vii) Goal € { minimum , maximum }

Example 1.2: Minimum vertex cover problem

Input: A graph G=(V,E), and

Constraint: M(G)= { S c V | that every edge of E is adjacent
to at least one vertex of S },

Value : V S eM(G), Value(S,G)=|S|,

Goal: Minimum.

1.1.1 NP-class

To discuss the NP-class we need the notion of Deterministic
Turing Machine DTM and Nondeterministic Turing Machine
NDTM. For a good review of this notion see [19]. Now we
define the class P as follows:

P = {L | there is a polynomial time DTM program M for
which L=Ly }.

Therefore P is the class of all problems which can be solved
by a DTM program in a time polynomial on the input size, (i.e),
if the input size is n, then the worst-case running time is O(n®)
for a constant c. Any problem in P is considered "tractable'.

Any DTM can be figured as follows:

. Finite
Read-write head —» state
control
Tape l
3 -2 -1 0 1 2 3

Figure 1.1 Schematic representation of a deterministic
one-tape Turing machine

The class NP is defined as follows:

NP = { L | there is a polynomial time Nondeterministic (one-
tape) Turing Machine program M for which Ly =L } or,

It is the class of problems whose solutions can be verified in
time polynomial in the size of the input.
The Nondeterministic Turing machine (NDTM) model has
exactly the same structure as a DTM, except that it is
augmented with a guessing module having its own write — only
head as illustrated schematically in figure 1.2.

Guessing Finite state
module control
Guessing head
tape Read-write head
A 4 \4
-3 -2 -1 0 1 2 3

Figure 1.2 Schematic representation of a nondeterministic one-
tape Turing machine

We will define now the transformations (Reductions) between
Decision problems polynomial time transformation f from L; to
L, (L1 <p Ly).

e F transforms the input for L, into an input for L, such
that the transformed input is a yes-input for L, if and
only if the original input was a yes-input for L;.

e Fis computable in polynomial time.

F(x)

| X) Tran;form R Algorithm | Yes or no
n[i)-:: Inut for L, Answer for L, on
Ly for L, f(x)=answer for L;on x
Figure 1.3

Theorem 1.1: if Li;<pL,and L, € P, then L, P.

If there exist polynomial time algorithm for L, , then there is
Polynomial time algorithm for L.

If there is not Polynomial time algorithm for L, then there
can not be a Polynomial time algorithm for L.

Fact: The relation <p is transitive, i.e. L; <pL; and L, <p L3
implies that L; <p L3,

R

We shall use this fact in chapter 2, 3, and 4.

Definition 1.3: A decision problem L is NP-complete (NPC)
if:

1. LeNP, and

2. for every L'eNP,L'<p L.

To prove that a problem L is NPC it is sufficitiont to get a
known NPC problem L' and show L' <p L.
The first problem which was proved to be an NP-complete
is the Satisfiability problem (SAT) by [Cook's theorem],
which is

Theorem 1.2 (Cook's theorem) Satisfiability is an NP-
complete, see [19] for the proof.

By this theorem we can make sequence of reductions to
prove that many problems are NP-complete. For example
the following figure is a tree of transformations between
NP-complete problems.

SAT
v
3SAT
HC clique
A 4 \ 4
TSP VC
Figure 1.4

VY

See [19] for details

If we want to show that a problem U is an NPC, then we (i)
show that U € NP (ii) select a known NPC problem L' and show
that L' <p L.

Example 1.3

In this example we prove that the vertex cover is an NP-
complete problem and also we study the relation between it and
the two NP-complete problems the clique and the independent
set in a certain graph G. We first define the three problems.
The vertex cover problem (VC):

Instance: a graph G=(V,E) and a positive integer k < |V|
Output: Decide whether there is a subset V' — V of size < k
such that each edge in E has at least one endpoint in V'.

The Clique problem:

Instance: a graph G=(V,E) and a positive integer k < |V|
Output: Decide whether G have a Clique of size > k (i.e. a
subset V' c V of size at least k such that V' make a complete

graph).

The independent set problem (IS):

Instance : a graph G=(V,E) and a positive k < |V]|.

Output: Decide whether G have an independent set of size > k
(i.e. a subset V' c V of size at least k such that G has no edge
between any pair).

The relationships between the above three problems are as
follows:
For any graph G=(V,E) and a subset V' c V, the following
statements are equivalent:

(a) V'is a vertex cover for G.

(b) V-V'is an independent set for G.

(¢) V-V'is a clique in the complement G°=(V,E) with

E‘={{u,v}: u,v € V and {u,v} ¢E}.
These relationships between them make it a trivial matter to

transform any one of these problems to each of the other two
problems. This implies that the NP-completeness of all the three

VY

problems will follow as an immediate consequence of proving
that any one of them is NP-complete.
The following theorem proves that VC is NP-complete

Theorem 1.3. Vertex Cover is a NP-complete.
Proof:

It is easy to show that VC € NP, since a nondeterministic
algorithm needs only to guess a subset of vertices and check in a
polynomial time whether that this subset contains at least one
endpoint of every edge and that its size is an appropriate
number. We first transform 3SAT to VC. Let U={u,u,,....,u,}
and C={c;,c2,...... ,cm} be an instance of 3SAT. Now we should
construct a graph G=(V,E) and a positive integer k, from this
instance and prove that it has vertex cover of size k if and only
if C is satisfiable.

The constructing graph will be as follows:
For each variable u; € U, there is truth-setting component T; =
(Vi,Ej), with V; ={u;,u;'} (where u;' is the complement of u;) and
Ei = {{u;,u;'}}, that is, each two vertices joined by a single edge.
For each clause ¢; € C, there is S; =(V;',E;") , consisting of three
vertices and three edges joining them to form a triangle:

Vj' = {aI[j],aZ[jlaaS[j]} ’ Ej' = {{al[jlaaZ[j]}a {31[.”933[.“} ’
{azljl,asljl}}
Note that any vertex cover will have to contain at least two
vertices from Vj' in order to cover the edges in E;'.
For each clause ¢;eC, let the three literals in ¢; be denoted by x;,
¥i» and z;. Then the communication edges emanating from S; are
given by:

E;"={{a[j1.x;} aalilyi} {asljl iz}

The graph now is completed as follows, G=(V,E), where V=(

n

U vwodJ viade=J eyoJ ByodJ EM.
i=1 i=1 j=1 j=1

i=l

The following figure illustrates the construction of an instance
of VC from the instance U={uy,...,uq},
C={{ll]',llz,ll4'},{ll1,ll3',ll4'}}

)¢

uq uq uz uy us3 us3 Uy Uy

a[1]
32[2

ay[1] as[[1] 2] as[2]

Figure 1.5. vertex cover instance constructed from instance
3SAT instance(U={uy,...,us}, C={{u;',u,u,'},{u,us',us'}})

Now we will show that C is satisfiable if and only if G has a
vertex cover of size k or less by setting k=n + 2m. Firstly,
suppose that V' c V is a vertex cover for G with |[V'| < k. V'
must contain at least one vertex from T; and at least two
vertices from each S;. since this gives a total of at least n+2m=k
vertices, from this vertex cover we can get a truth assignment t:
U—>{True,False}. We set t(u;)=True if u; €V' and t(u;)=False if
u;' €V'. To prove that this assignment satisfies the clauses in C,
consider the three edges in E;'', only two of those edges can be
covered by vertices from V;' N V', so one of them must be
covered by a vertex from some V; that belongs to V'. But that
implies the corresponding literal, either u; or u;', from clause c;
is true under the truth assignment t, and hence clause ¢; is
satisfied by t. Because this holds for every ¢; €C, it follows that
t is a satisfying truth assignment for C. conversely, suppose that
t : U > {True,False} is a satisfying truth assignment for C. The
corresponding vertex cover V' includes one vertex from each T;
and two vertices from each S;. The vertex from T; in V' is u; if
t(u;)=True and is u;' if t(u;)=False. This ensures that at least one
of the three edges from each set E;'"" is covered, because t
satisfies each clause c;. Now we need only select endpoints from
S; of the other two edges in E;'', which gives the required vertex
cover.

\o

