

Modification of algorithms for NPproblems and implementing them using Functional programming languages

A Dissertation
Submitted to the Mathematical DepartmentFaculty of Science – Ain Shams University
In Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

In Computer Science Presented By

Niveen Samy Morckos Soliman

Supervised by

Prof. Dr. Sameh S. Daoud
Department of Mathematics
Faculty of Science
Ain Shams University

Prof. Dr. Fayed F.Ghaleb
Department of Mathematics
Faculty of Science
Ain Shams University

Acknowledgment

First of all, Thanks are to God, The most beneficent and merciful.

I wish to express my deepest thanks and appreciation to my supervisors, Prof. Dr. Sameh Sami Daoud and Prof. Dr. Fayed Fayek Mohamed Ghalip for helping and guiding me during the preparation of this thesis. Finally, I am grateful to my family for their encouragement and their help.

Summary

four chapters thesis contains and appendices. Chapter 1, titled by "An introduction to NP-problems and functional programming languages", this chapter consists of two sections. Section 1, contains the basic definitions of P, NP and NP-complete classes and how we can prove that a **NP-complete** problem. problem is Section introduces what is the functional programming languages paradigm and we introduce in precisely the functional programming language Miranda, which we use in our implementations. Chapter 2, has the title "Approximation algorithms for NP-hard optimization problems"; and consists of six sections. These sections discuss the approximation algorithm concept and the classes of the NP-optimization problems according to their approximation ratios. Also They discuss that there are some problems hard to approximate with approximation ratio constant using inapproximation concept. Chapter 3, has the title "Set Cover problem": and consists of two sections. Section 1, discusses the Set Cover problem (SC), its definition and some approximation algorithms for it. Section 2, modification to algorithm contains a an unweighted SC problem that uses a new technique (flow algorithm), we generalize this algorithm for the weighted SC problem. Chapter 4, has the title Minimum Membership Set Cover problem" and consists of two sections. Section 1 discusses the Minimum Membership Set Cover problem (MMSC), its definition, an approximation algorithm for it.

Section 2, contains a new greedy algorithm for MMSC problem and we prove that this algorithm get a solution with approximation ratio in order O(log n). Finally, Appendix A contains the Miranda implementation of flow algorithm for WSC problem. Appendix B contains the Miranda implementation of the greedy algorithm for WSC problem. Appendix C contains the Miranda implementation of our new algorithm for MMSC problem. Appendix D, contains Java classes which create the Random instances for WSC and MMSC problems.

The conclusion

We conclude that NP-hard problems have many applications in the world and it is important to study it. The approximation algorithm concept is useful to give a solution close to the optimal in polynomial instead of trying to get the optimal solution, since there is no algorithm solution gives optimal in the polynomial. We modify an approximation algorithm for unweighted Set problem that uses a new technique (flow algorithm), we generalize graph algorithm for the weighted Set Cover We also make problem. new algorithm for Minimum Membership Set problem and prove that this algorithm gives with solution a approximation ratio in order O(log n).

In future we will study and try to improve approximation algorithms for NP-hard problems and study flow graph technique more.

Contents

Acknowledgements

Summary

1 An introduction to NP-problems and functional
programming languages
1.1 NP-hard
problems1
1.1.1 NP-class
1.1.2 The relationship between P,NP and NPC9
1.1.3 Algorithm design techniques and concepts9
1.2 Functional programming
Languages10
1.2.1 Functional and imperative programming languages10
1.2.2 Features of functional languages11
1.2.3 Functional programming Languages12
1.2.4 Miranda14
2 Approximation algorithms for NP-hard optimization problems
2.1 Concept of approximation algorithms
2.2 Polynomial approximation
schemes24
2.3 Classes of optimization problems
2.3.1 Constant factor approximation ratio28
2.3.2 Poly-logarithmic approximation ratio28
2.4 Stability of approximation29
2.5 Dual approximation algorithms32
2.6 Inapproximation34
2.6.1 Approximation preserving reduction35
2.6.2 Probabilistically checkable proofs36

3.1 Set Cover40
3.1.1 Approximation of SC problem41
3.1.2 Relaxation to linear programming problem41
3.1.3 Greedy algorithm for SC42
3.1.4 Local improvement for SC47
3.1.5 Special cases of SC problem48
3.1.6 Weighted SC problem52
3.2 New efficient heuristic algorithm for weighted SC problem55
3.2.1 SC conversion to minimum flow graph55
3.2.2 Greedy algorithm for WSC60
3.2.3 Miranda implementation for flow graph algorithm61
4 Minimum Membership Set Cover problem
4.1 Minimum Membership SC problem65
4.1.1 MMSC and Interference in Cellular Network65
4.1.2 MMSC and consecutive one property67
4.2 New greedy algorithm for MMSC problem
4.2.1 Complexity of MMSC
4.2.2 Relaxation to Linear programming problem70
4.2.3 Our new greedy algorithm71
4.2.4 Miranda implementation of greedy algorithm for MMSC.77
12.1 Will all all implementation of greedy digorithm for Williams
References80
Appendices
A Miranda sovint implementation of flavy algorithm for WCC 92
A Miranda script implementation of flow algorithm for WSC83 B. Miranda seriet implementation of Greedy algorithm for WSC87
B Miranda script implementation of Greedy algorithm for WSC87

3 Set Cover problem

Chapter 1

An introduction to NP-problems and functional programming languages

1.1 NP- hard problems

A problem is a general question to be answered, and usually has several parameters. A problem is described by giving a general description of all its parameters and a statement of what properties the answer is required to satisfy.

In this thesis we shall mainly discuss two types of problems:

- 1- decision problems
- 2- Optimization problems

Their definition according to [11] is as follows:

Definition 1.1 A decision problem is a triple (L, U, Σ) where Σ is an alphabet and L \leq U \leq Σ^* . An algorithm A solves (decides) it, if for every $x \in U$, (i) A (x) = 1, if $x \in L$, and (ii) A (x) = 0, if $x \in U$ - L $(x \notin L)$.

Example 1.1

K-Clique Problem; decide for a given graph G and a positive integer k, whether G contains a complete graph K_k of k vertices as a sub-graph of G

Input: A positive integer k and a graph G

Output: "yes" if G contains a clique of size k, "no" otherwise.

Definition 1.2. An optimization problem is a 7-tuple $U=(\sum_I, \sum_O, L, L_I, M, Value, Goal)$, where

- (i) \sum_{I} is an alphabet, called the input alphabet of U,
- (ii) \sum_{O} is an alphabet, called the output alphabet of U,

- (iii) $L \subseteq \sum_{I}^{*}$ is the language of feasible problem instances,
- (iv) $L_I \subseteq L$ is the language of the (actual) problem instances of U,
- (v) M is a function from L to $Pot(\sum_{O}^{*})$, $\forall x \in L$, M(x) is the set of feasible solutions for x,
- (vi) Value is a function, such that \forall (u,x), where $u \in M(x)$ for some $x \in L$, it assigns a positive real number Value(u,x),
- (vii) Goal ∈ { minimum, maximum }

Example 1.2: Minimum vertex cover problem

Input: A graph G=(V,E), and

Constraint: $M(G) = \{ S \subseteq V \mid \text{that every edge of E is adjacent} \}$

to at least one vertex of S },

Value: $\forall S \in M(G)$, Value(S,G)=|S|,

Goal: Minimum.

1.1.1 NP-class

To discuss the NP-class we need the notion of Deterministic Turing Machine DTM and Nondeterministic Turing Machine NDTM. For a good review of this notion see [19]. Now we define the class P as follows:

 $P = \{L \mid \text{there is a polynomial time DTM program M for which } L = L_M \}.$

Therefore P is the class of all problems which can be solved by a DTM program in a time polynomial on the input size, (i.e), if the input size is n, then the worst-case running time is O(n^c) for a constant c. Any problem in P is considered "tractable".

Any DTM can be figured as follows:

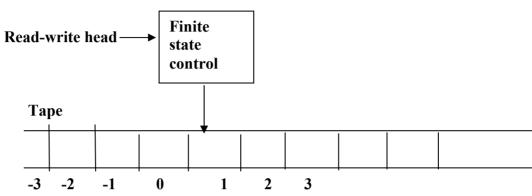


Figure 1.1 Schematic representation of a deterministic one-tape Turing machine

The class NP is defined as follows:

NP = { L | there is a polynomial time Nondeterministic (onetape) Turing Machine program M for which $L_M = L$ } or,

It is the class of problems whose solutions can be verified in time polynomial in the size of the input.

The Nondeterministic Turing machine (NDTM) model has exactly the same structure as a DTM, except that it is augmented with a guessing module having its own write – only head as illustrated schematically in figure 1.2.

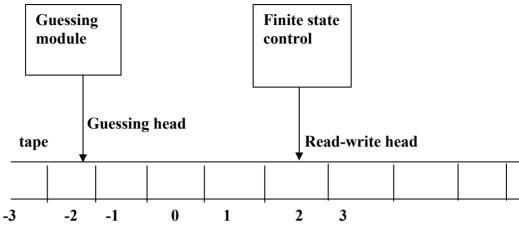


Figure 1.2 Schematic representation of a nondeterministic onetape Turing machine

We will define now the transformations (Reductions) between Decision problems polynomial time transformation f from L_1 to L_2 ($L_1 \le_P L_2$).

- F transforms the input for L_1 into an input for L_2 such that the transformed input is a yes-input for L_2 if and only if the original input was a yes-input for L_1 .
- F is computable in polynomial time.

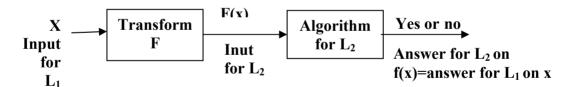


Figure 1.3

Theorem 1.1: if $L_1 \leq_P L_2$ and $L_2 \in P$, then $L_1 \in P$.

If there exist polynomial time algorithm for L_2 , then there is Polynomial time algorithm for $\ L_1$.

If there is not Polynomial time algorithm for L_1 , then there can not be a Polynomial time algorithm for L_2 .

Fact: The relation \leq_P is transitive, i.e. $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$ implies that $L_1 \leq_P L_3$.

We shall use this fact in chapter 2, 3, and 4.

Definition 1.3: A decision problem L is NP-complete (NPC) if:

- 1. $L \in NP$, and
- 2. for every $L' \in NP$, $L' \leq_P L$.

To prove that a problem L is NPC it is sufficitiont to get a known NPC problem L' and show $L' \leq_P L$.

The first problem which was proved to be an NP-complete is the Satisfiability problem (SAT) by [Cook's theorem], which is

Theorem 1.2 (Cook's theorem) Satisfiability is an NP-complete, see [19] for the proof.

By this theorem we can make sequence of reductions to prove that many problems are NP-complete. For example the following figure is a tree of transformations between NP-complete problems.

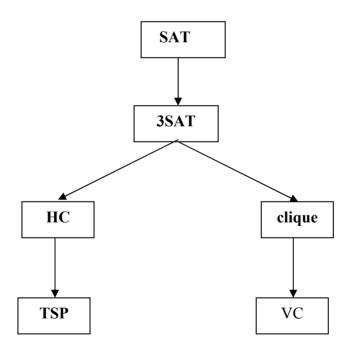


Figure 1.4

See [19] for details

If we want to show that a problem U is an NPC, then we (i) show that $U \in NP$ (ii) select a known NPC problem L' and show that $L' \leq_P L$.

Example 1.3

In this example we prove that the vertex cover is an NP-complete problem and also we study the relation between it and the two NP-complete problems the clique and the independent set in a certain graph G. We first define the three problems.

The vertex cover problem (VC):

Instance: a graph G=(V,E) and a positive integer $k \le |V|$

Output: Decide whether there is a subset $V' \subseteq V$ of size $\leq k$ such that each edge in E has at least one endpoint in V'.

The Clique problem:

Instance: a graph G=(V,E) and a positive integer $k \le |V|$

Output: Decide whether G have a Clique of size $\geq k$ (i.e. a subset $V' \subseteq V$ of size at least k such that V' make a complete graph).

The independent set problem (IS):

Instance : a graph G=(V,E) and a positive $k \le |V|$.

Output: Decide whether G have an independent set of size $\geq k$ (i.e. a subset $V' \subseteq V$ of size at least k such that G has no edge between any pair).

The relationships between the above three problems are as follows:

For any graph G=(V,E) and a subset $V'\subseteq V$, the following statements are equivalent:

- (a) V' is a vertex cover for G.
- (b) V-V' is an independent set for G.
- (c) V-V' is a clique in the complement $G^c = (V, E^c)$ with $E^c = \{\{u,v\}: u,v \in V \text{ and } \{u,v\} \not\in E\}.$

These relationships between them make it a trivial matter to transform any one of these problems to each of the other two problems. This implies that the NP-completeness of all the three problems will follow as an immediate consequence of proving that any one of them is NP-complete.

The following theorem proves that VC is NP-complete

Theorem 1.3. Vertex Cover is a NP-complete. Proof:

It is easy to show that $VC \in NP$, since a nondeterministic algorithm needs only to guess a subset of vertices and check in a polynomial time whether that this subset contains at least one endpoint of every edge and that its size is an appropriate number. We first transform 3SAT to VC. Let $U=\{u_1,u_2,...,u_n\}$ and $C=\{c_1,c_2,...,c_m\}$ be an instance of 3SAT. Now we should construct a graph G=(V,E) and a positive integer k, from this instance and prove that it has vertex cover of size k if and only if C is satisfiable.

The constructing graph will be as follows:

For each variable $u_i \in U$, there is truth-setting component $T_i = (V_i, E_i)$, with $V_i = \{u_i, u_i'\}$ (where u_i' is the complement of u_i) and $E_i = \{\{u_i, u_i'\}\}$, that is, each two vertices joined by a single edge. For each clause $c_j \in C$, there is $S_j = (V_j', E_j')$, consisting of three vertices and three edges joining them to form a triangle:

$$V_j' = \{a_1[j], a_2[j], a_3[j]\}$$
 , $E_j' = \{\{a_1[j], a_2[j]\}, \{a_1[j], a_3[j]\}$, $\{a_2[j], a_3[j]\}\}$

Note that any vertex cover will have to contain at least two vertices from V_j ' in order to cover the edges in E_j '.

For each clause $c_j \in C$, let the three literals in c_j be denoted by x_j , y_j , and z_j . Then the communication edges emanating from S_j are given by:

$$E_i''=\{\{a_1[j],x_i\},\{a_2[j],y_i\},\{a_3[j],z_i\}\}$$

The graph now is completed as follows, G=(V,E), where V=(

$$\bigcup_{i=1}^{n} \mathbf{V_{i}}) \cup (\bigcup_{j=1}^{m} \mathbf{V_{j}'}) \text{ and } \mathbf{E} = (\bigcup_{i=1}^{n} \mathbf{E_{i}}) \cup (\bigcup_{j=1}^{m} \mathbf{E_{j}'}) \cup (\bigcup_{j=1}^{m} \mathbf{E_{j}''}).$$

The following figure illustrates the construction of an instance of VC from the instance $U=\{u_1,...,u_4\}$, $C=\{\{u_1',u_2,u_4'\},\{u_1,u_3',u_4'\}\}$

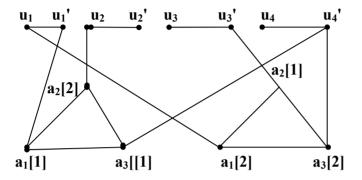


Figure 1.5. vertex cover instance constructed from instance 3SAT instance $(U=\{u_1,...,u_4\}, C=\{\{u_1',u_2,u_4'\},\{u_1,u_3',u_4'\}\})$

Now we will show that C is satisfiable if and only if G has a vertex cover of size k or less by setting k=n + 2m. Firstly, suppose that $V' \subset V$ is a vertex cover for G with $|V'| \leq k$. V' must contain at least one vertex from Ti and at least two vertices from each S_i. since this gives a total of at least n+2m=k vertices, from this vertex cover we can get a truth assignment t: U→{True,False}. We set $t(u_i)$ =True if $u_i \in V'$ and $t(u_i)$ =False if $u_i' \in V'$. To prove that this assignment satisfies the clauses in C, consider the three edges in Ei", only two of those edges can be covered by vertices from $V_i' \cap V'$, so one of them must be covered by a vertex from some V_i that belongs to V'. But that implies the corresponding literal, either ui or ui', from clause ci is true under the truth assignment t, and hence clause ci is satisfied by t. Because this holds for every $c_i \in C$, it follows that t is a satisfying truth assignment for C. conversely, suppose that $t: U \rightarrow \{True, False\}$ is a satisfying truth assignment for C. The corresponding vertex cover V' includes one vertex from each Ti and two vertices from each Si. The vertex from Ti in V' is ui if t(u_i)=True and is u_i' if t(u_i)=False. This ensures that at least one of the three edges from each set Ei' is covered, because t satisfies each clause ci. Now we need only select endpoints from S_i of the other two edges in E_i", which gives the required vertex cover.