EVALUATION OF HYPOLIPIDEMIC EFFECT OF SOME COMMON FOODS IN EGYPT

By

KAREM EL-SAYED ALY FOUDA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2003

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Biochemistry)

Department of Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2010

APPROVAL SHEET

EVALUATION OF HYPOLIPIDEMIC EFFECT OF SOME COMMON FOODS IN EGYPT

M.Sc. Thesis
In
Agric. Sci. (Biochemistry)

By

KAREM EL-SAYED ALY FOUDA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2003

Approval Committee

Dr. KHALED MAMOUN TAHA Professor of Biochemistry, Fac. Agric., El -Menofia University
Dr. EMAM ABDEL-MOBDY ABDEL-REHEEM Professor of Biochemistry, Fac. Agric., Cairo University
Dr. MAGDY ABDEL-ALEM SHALLAN Professor of Biochemistry, Fac. Agric., Cairo University
Dr. MOHAMED MAGDY RASHED Professor of Biochemistry, Fac. Agric., Cairo University

Date: 1/7/2010

SUPERVISION SHEET

EVALUATION OF HYPOLIPIDEMIC EFFECT OF SOME COMMON FOODS IN EGYPT

M.Sc. Thesis
In
Agric. Sci. (Biochemistry)

By

KAREM EL-SAYED ALY FOUDA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2003

SUPERVISION COMMITTEE

Dr. MOHAMED MAGDY RASHED Professor of Biochemistry, Fac. Agric., Cairo University

Dr. MAGDY ABDEL-ALEM SHALLAN Professor of Biochemistry, Fac. Agric., Cairo University

Dr. LAILA HANNA MOSAAD
Researcher Professor of Biochemistry and Nutrition, NRC, Giza

Name of Candidate: Karem El-Sayed Aly Fouda Degree: M.Sc. Title of Thesis: Evaluation of Hypolipidemic Effect of Some Common

Foods in Egypt.

Supervisors: Dr. Mohamed Magdy Rashed

Dr. Magdy Abdel-Alem Shallan

Dr. Laila Hanna Mosaad.

Department: Biochemistry **Approval:** 1/7/2010

ABSTRACT

The present study was designed to evaluate the hypolipidemic effect of some common foods in Egypt, such as some vegetables (onion, tomato, parsley, red beetroot, head of cabbage, head of lettuce, head of radish and green pepper fruits), some cereals (whole and peeled wheat) and some legumes (chickpea, lupine and fenugreek seeds) which were analyzed then two powdered mixtures were prepared from these samples. The first mixture was prepared from whole wheat, cabbage, parsley and pepper, but the second one was prepared from whole wheat, red beet root, parsley and pepper. Chemical composition of these mixtures was analyzed. The hypolipidemic effect of these two mixtures was evaluated in hyperlipidemic rats fed on balanced diet containing either mixture (1) or (2) for four weeks. The nutritional safety of these mixtures was evaluated through liver and kidney functions. Chemical composition of the powder mixtures revealed that mixture (1) contains protein, crude fibers, ash, dietary fibers, vitamin E, β-carotene, total phenolic compounds and saponin more than mixture (2), while mixture (2) contains fat and carbohydrates more than mixture (1). Results of animal experiment showed non-significant changes in final body weight and body weight gain in rats fed on balanced diet containing mixture (1) or (2) when compared with health control rats. Hyperlipidemic rats fed on balanced diet containing mixture (1) or (2) showed significant reduction in plasma total lipids, total cholesterol, low density lipoprotein cholesterol (LDL-C), triglycerides and the ratio of total cholesterol/high density lipoprotein cholesterol (HDL-C) with different degrees, while HDL-C was increased significantly in hyperlipidemic rats. Plasma levels of creatinine and urea as indicators for kidneys function showed non-significant changes in all groups relative to control. Also plasma activities of AST and ALT, as indicators for liver function, showed non-significant changes in all studied groups relative to control. These results revealed that there was a complete safety of the present studied mixtures for feeding.

Key words: Hyperlipidemia, vegetables, cereals, legumes, dietary mixtures.

ACKNOWLEDGEMENT

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Mohamed Magdy Rashed** Professor of Biochemistry and **Dr. Magdy Abdel Alem Shallan** Professor of Biochemistry, Faculty of Agriculture, Cairo University for suggesting the problem, supervision, continued assistance and their guidance through the course of study and revision the manuscript of this thesis.

I wish to express my sincere thanks, deepest gratitude and appreciation to **Dr. Laila Hanna Mosaad** Researcher Professor of Biochemistry and Nutrition, and **Dr. Doha Abdo Mohamed** Assistant Researcher Professor, National Research Center, for suggesting the subject, for the extremely good research facilities, constructive supervision and criticism throughout the course of the work. In addition, many thanks to **Dr. Ibrahem Hamed** Researcher Professor of Biochemistry and Nutrition, National Research Center for help me all the time and support me to complete this thesis.

Also, Grateful appreciation to all staff members of Nutrition Department, National Research Center.

CONTENTS

NTRODUCTION			
EVIEW OF LITERATURE			
. Interrelationship between	blood	lipids	and
cardiovascular diseases			
. Relationship between food			
lipid profile			
a. Fats			
1. Saturated fatty acids and bl	ood lipid p	rofile	
2. Monounsaturated fatty acid	ls and bloo	d lipid p	rofile
3. Polyunsaturated fatty acid	s of the ω	-6 serie	es and
blood lipid profile			
4. Polyunsaturated fatty acid blood lipid profile			
b. Carbohydrates and dietary fib			
c. Protein			
8. Relation between food antio			
profile			
a. Vitamin C			
b. Vitamin E			
c. Carotenoids			
d. Phenolic compounds			
. Hypolipidemic effect of some			
a. Plant sterols			
b. Sulfur compounds			
c. Saponins			
MAERIALS AND METHODS	S		
RESULTS			
1. Chemical composition			
a. Chemical composition of ce			
investigation		_	
b. Chemical composition			under
investigation			
c. Chemical composition of pre-	oared two i	nixtures	under
investigation			

2. St t	udying	the	hypolipidemic	effect	of	the
pr	epared	two m	ixtures			
DISC	USSIO	N				
CON	CLUSIC	ON				
SUM	MARY.					
REFE	ERENC	ES				
ABBI	REVIAT	ΓIONS	S			
ARA	BIC SU	MMA	RY			

LIST OF TABLES

No.	Title	Page
1.	Composition of different experimental diets	32
2.	Composition of Salt mixture	32
3.	Composition of vitamin mixture	33
4.	Proximate analysis of studied cereals and legumes	61
5.	Mineral contents of studied cereals and legumes	61
6.	Total dietary fibers, total phenolic and saponin contents of studied cereals and legumes	62
7.	Proximate analysis of studied vegetables	63
8.	Mineral contents of studied vegetables	64
9.	Total dietary fibers, total phenolic and saponin contents of studied vegetables	65
10.	Proximate analysis of the prepared two mixtures.	66
11.	Mineral contents of the prepared two mixtures	66
12.	Total dietary Fibers, total phenolic and saponin contents of the two mixtures	67
13.	Vitamin E and β-carotene contents of the prepared two mixtures	67
14.	Nutritional parameters of normal and Hyperlipidemic rats in the first stage	68
15.	Plasma lipids profile of normal and Hyperlipidemic rats in the first stage	68
16.	Nutritional parameters of different experimental groups in the second stage	70

17.	Plasma	lipids	profile	of differen	nt exp	perimental		
	groups	in the s	econd st	age			72	
18.				function			73	
	experin	experimental groups						

LIST OF FIGURES

No.	Title	Page
1.	Plasma lipid profile of normal and hyperlipidemic rats in the first stage of the experiment	69
2.	Plasma total lipid, total cholesterol and triglycerides of different experimental groups (second stage)	71
3.	Plasma LDL-C, HDL-C and total cholesterol/HDL-C ratio of different experimental groups (second stage)	71

INTRODUCTION

Cholesterol is essential for many functions in the human body. However, imbalance of cholesterol level as a result of environmental and genetic factors leads to hyperlipidemia, a predominant risk factor for cardiovascular diseases (CVD) (Deng, 2009). CVD including coronary heart disease and stroke are the leading cause of mortality in both developed and developing countries, accounting for roughly 20% of all worldwide death pear year (Thomas and Rich, 2007). Therefore, hyperlipidemia and its associated CVD represented one of the greatest worldwide economic, social and medical challenges that we are facing now (Olshansky *et al.*, 2005).

Diets play a crucial role in the etiology of CVD (Ness and Powles, 1997a). Changes in dietary patterns such as reduced cholesterol intake, restriction of carbohydrate and fat intake as well as substitution of polyunsaturated for saturated fats may be the most obvious means by which levels of plasma lipids could be controlled (Lichtenstein, 2006).

Consumption of fruits, vegetables and cereals is associated with a lowered risk of CVD (Prior, 2003 and Nicolle *et al.*, 2004). This beneficial effect has been ascribed, in part to the antioxidants, vitamin C, polyphenols, vitamin E and carotenoids in plant-based foods. Vegetables, cereals and other plant foods rich in antioxidant molecules have received a growing interest because they delay oxidative degradation of lipids and thereby improve the nutritional value of food (Nicolle *et al.*, 2004). Also vegetables and cereals are rich sources of dietary fibers, which reduced blood total cholesterol and low density

lipoprotein cholesterol (LDL-C) (Olmo *et al.*, 2007). In recent years, many studies have focused on the bioavailability of phenolic compounds in the prevention and treatment of hyperlipidemia and obesity. Phenolic compounds and flavonoids have pharmacological properties such as antioxidant, antithrombotic, anti-cancer and hypolipidemic (Monfort *et al.*, 1995 and Son and Lewis, 2002). They are widely distributed in plants and form part of the human diet.

Therefore, the aim of the present work was to achieve the followings:

- 1. Since the chemical composition of crops varies with crop cultivars, soil and climatic conditions of the area, it is important to study the chemical composition of some vegetables, cereals and legumes grown in Egypt before using any of them in the study.
- Determination of dietary fiber and some phytochemicals such as total phenolic compounds content and saponins in all the studied plants.
- 3. Preparation of two plant mixtures from cereals and vegetables and studying their chemical composition and its content from dietary fiber, total phenolic compounds, saponin, β-carotene and vitamin E.
- 4. Evaluation of the hypolipidemic effect of the prepared plant mixtures in hyperlipidemic rats.

REVIEW OF LITERATURE

1. Interrelationship between blood lipids and cardiovascular diseases.

Cholesterol is a multifunctional molecule, which serves as an essential membrane component, as a regulation cofactor for receptors and as a precursor for steroid hormones. All biological membranes are composed of lipids and proteins. The most abundant lipids in the plasma membrane of mammals are phospholipids and cholesterol. Forming the basis of the membrane, the phospholipids are arranged in a bilayer structure that creates a selective barrier for polar molecules. Cholesterol is obtained from the diet and can also be synthesized in the liver. The average North-American diet provides about 300-500 mg of cholesterol per day, while endogenous supplies of cholesterol can reach 1000–1600 mg per day. The rate of cholesterol formation by the body is highly responsive to the amount of cholesterol absorbed from dietary sources. It has been shown that a reduction of cholesterol absorption in the gut could not only reduce total serum cholesterol level, but could also increase the ratio of high density lipoprotein cholesterol (HDL-C) to low density lipoprotein cholesterol (LDL-C) in blood (Rozner and Garti, 2006).

Maintenance of cholesterol homeostasis is vital for healthy status and achieved through a regulatory network consisting of genes involved in cholesterol synthesis, absorption, metabolism and elimination. Imbalance of cholesterol level leads to hyperlipidemia, a predominant risk factor for cardiovascular diseases (CVD) (Ballantyne

et al., 2005). Hyperlipidemia is an elevation of lipids (fats) in the bloodstream and usually means high level of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) along with decrease in high-density lipoprotein cholesterol (HDL-C) (Harrison et al., 2003). Cardiovascular diseases including coronary heart disease and stroke are the leading cause of mortality, accounting for nearly 50% of all deaths in the Western developed world (Rich, 2006). CVD risk increases proportionally with cholesterol levels (Sacks, 1998). Total cholesterol and LDL-C levels predict both first and recurrent coronary events (Rose et al., 1997). HDL-C has an inverse relation with coronary artery disease risk, with low levels predicting increased risk (Rifkind, 1990). The ratio of total to HDL-C represents a summary lipid measure of coronary artery disease risk, which begins to increase when the ratio exceeds 5 (Kinosian et al., 1994).

Several ecological and epidemiological studies have proved that elevated plasma levels of total cholesterol and, in particular, LDL-C are associated with an increased risk of coronary and, in general, cardiovascular events (Grundy, 1990). High level of LDL-C deposits on the interior of blood vessels resulting hardened arteries, narrowing of the blood vessels and coronary heart disease. High levels of HDL-C have been shown to reduce some of the harmful effects of LDL-C. HDL-C picks up and transports cholesterol in the blood back to the liver, which leads to its elimination from the body. HDL-C can help to keep LDL-C from building up in the walls of the arteries (Lichtenstein, 1998).

The large majority of epidemiological studies have also demonstrated that elevated plasma triacylglycerol (triglyceride) and/or reduced plasma HDL-C concentrations are associated with increased cardiovascular risk (Poli *et al.*, 2008). During the past decade, a great deal of interest has focused on the effect of lipoprotein lipase (LPL) on lipid metabolism and atherogenesis. LPL is produced mainly by the adipose, heart, and muscle tissues and to some extent by macrophages. It plays an important role in lipid metabolism by hydrolyzing core triglycerides (TG) from circulating chylomicrons and very low-density lipoproteins (VLDL-C) (Beisiegel, 1996). Decreased LPL activity leads to increased TG and decreased HDL-C levels, which are risk factors for the development of atherosclerosis (Patsch *et al.*, 1987 and Kuusi *et al.*, 1989).

More recently, many controlled studies undertaken with dietary intervention have demonstrated that reduced plasma levels of total and LDL-C result in a decreased incidence of such events. The risk reduction is strongly related to the magnitude of the decline in LDL-C. In general, a 1% decrease in plasma levels of total or LDL-C is followed, on average, by a 1% risk-reduction (Lichtenstein, 2006).

2. Relationship between food component and blood lipid profile

Diet plays a crucial role in the etiology of cardiovascular diseases (Pittaway *et al.*, 2008). The classic diet-heart hypothesis postulates that an increased intake of saturated fats and cholesterol and a reduced intake of polyunsaturated fats increases blood cholesterol levels, which