تقييم الإدراك الوظيفي في مرضى ضعف السمع بعد التأهيل السمعي

رسالة مقدمه من الطبيبة معدد الطبيبة محمد الطبيبة الحصول على درجة الدكتوراه

في أمراض السمع والصمم

تحت إشراف

الأستاذ الدكتور/ أحمد سامح فريد

عميد طب قصر العينى كلية الطب – جامعة القاهرة

الدكتورة/ عبير عثمان دبوس

مدرس أمراض السمع والصمم كلية الطب – جامعة القاهرة

الدكتورة/ أميرة ماجد الشناوي

مدرس أمراض السمع والصمم كلية الطب – جامعة القاهرة

كلية الطب - جامعة القاهرة (٢٠٠٩)

Abstract:

Objective: To study the cognitive functions of rehabilitated hearing impaired (HI) patients using auditory perception skills and P300 event related potential.

Methods: Aided speech discrimination score (WDS %) and acoustic P300 were recorded in free field for 40 rehabilitated (hearing aids, cochlear implants) HI adults and compared to 10 normal hearing controls.

Results: Rehabilitated HI patients had statistically significant longer P300 latencies and less WDS % compared to the controls. There was no statistically significant difference between mean P300 latency without and with the device at any degree of hearing loss. There was a statistically significant inverse correlation between P300 latency and age of hearing loss and WDS%, and a direct correlation between P300 latency and duration of hearing loss and hearing threshold. There was a statistically significant difference as regards regular use of the device among subjects with different speech performance categories. Subjects who use the device regularly showed higher percentage of positive responses than subjects who don't use it regularly. Subjects with excellent speech performance showed the statistically significant lowest mean P300 latencies.

Conclusion: Amplification increases the detectability of P300 and shortens its latency. P300 elicited by tonal contrasts is a neurophysiologic indicator of the discrimination abilities.

<u>Keywords</u>: cochlear implants, cognitive functions, hearing impaired individuals, hearing aids, P300 cognitive event related potential, speech discrimination.

Assessment of Cognitive Functions in Rehabilitated Hearing Impaired Patients

Thesis submitted in partial fulfillment for the requirements of M.D. Degree in Audiological Medicine

By: **Ghada Abo-El-Hadid Mohamed**M.Sc.

Supervised by:

Prof. Dr. Ahmed Sameh Farid

Professor of ENT and Audiology

And Dean of the Faculty of Medicine,
Faculty of Medicine, Cairo University

Dr. Abeir Osman Dabbous

Assistant Professor of Audiology
Faculty of Medicine, Cairo University

Dr. Amira Maged El Shennawy

Lecturer of Audiology
Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2009

Acknowledgment

First and foremost thanks to God, the most merciful. It is my pleasure to acknowledge the help of many in making this work possible.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Ahmed Sameh Farid** Dean of the Faculty of Medicine, Cairo University, for the supervision of the thesis and for support and advice during all phases of work.

I also wish to express my sincere gratitude to **Dr. Abeir Dabbous** Assistant Professor of audiology, Faculty of Medicine,
Cairo University, for her encouragement, suggestions and
patience that considerably affected my work.

My deep thanks and gratitude to **Dr. Amira El Shennway** Lecturer of audiology, Faculty of Medicine, Cairo University, for her kindness, patience, meticulous revision and encouragement had really refined this work.

Thanks to my mother, my husband and rest of my family for their encouragement and tolerance. And thanks to every one who gave me a hand in this work.

Introduction and Rationale

Cognitive function is a term used to describe the individual capacity to analyze and utilize the incoming information to coordinate behavior. It constitutes such specific functions such as perception, attention, memory, and complex skills such as reading. Cognitive processing is a complex mental activity that cannot have a single generator structure, but most probably involves a number of areas of cortical and sub-cortical regions (Musiek and Lee, 1999).

Hearing impaired individuals' brains process stimuli with greater accuracy and in a more effective manner when these individuals use their personal hearing aids or cochlear implant. The effect on cortical event related potentials (ERPs) and behavioral measures of discrimination are dependent on the degree of sensorineural hearing loss (SNHL), the intensity of the stimuli, and the level of cortical auditory processing that the response measure is assessing (**Korczak et al., 2005**).

P300 is an endogenous component of late evoked response to visual, somato-sensory or auditory task-relevant stimuli. This event-related potential (ERP) closely reflects cognitive functions such as stimulus discrimination and processing as well as attention capabilities (Franco, 2001).

P300 could be used to monitor perception abilities, as they offer insight into the complex processing strategies of the auditory system (Musiek and Lee, 1999). P300 is an objective test and it can be applied in all age ranges provided that the subjects understand the required task.

P300 provide information about the biological processes underlying speech processing. For this reason, ERPs are of great value to hearing scientists and audiologists to assess the improvements in the neural processing of speech with amplification (hearing aids, cochlear implants) (Martin et al., 2008). In hearing impaired subjects who are users of electronic devices, the test should be conducted in free field (Beynon et al., 2002).

Rationale:

The study is issued to focus on the cognitive functions of rehabilitated hearing impaired patients.

Aim of the Work

To study the cognitive functions of rehabilitated hearing impaired patients using auditory perception skills and P300 event related potential recorded in free field

List of Abbreviations

ABR	Auditory Brainstem response
ACE	Advanced Combination Encoder
AEP	Auditory evoked potentials
CAPD	Central Auditory Processing Disorder
CI	Cochlear Implant
CIS	Continuous Interleaved Sampling
CNS	Central nervous system
CNV	Contingent Negative Variation
CT	Computed Tomography
DSP	Digital Signal Processing
Ecoch.G	Electrocochleography
ERP	Event Related Potential
FDA	Food Drug Adminstration
HA	Hearing Aid
НІ	Hearing Impaired
MMN	Mismatch Negativity
MPEAK	Multi PEAK
MRI	Magnetic Resonance Imaging
PBKG	Phonetically Balanced Kinder Garden
SD	standard deviation
SNHL	Sensorineural Hearing Loss
SPEAK	Spectral peak
SPL	Sound Pressure Level
SRT	Speech Reception Threshold
US	United States
WDS%	Word discrimination score percentage

List of Content

Title	Page No.
LIST OF TABLES	i
LIST OF FIGURES	iv
LIST OF ABBERVIATIONS	vi
INTRODUCTION	1
II. AIM OF THE WORK	3
III. REVIEW OF LITERATURE	4
A. Late evoked potentials	4
Introduction	4
 Description of the late auditory potentials 	8
B. Auditory event related potential P300	13
 Definition 	13
Brief history	13
"Odd ball" Paradigm	14
■ P300 generators	15
 Auditory P300 recording procedures 	19
 Variables affecting auditory P300 	21
 Clinical application of P300 	25
C. Rehabilitated hearing impaired patients	29
 Hearing aid technology 	31
Cochlear implant	35
D. Role of P300 in assessment of rehabilitated hearing	50
impaired patients	

Title	Page No.
■ Role of electrophysiological measures (mainly	51
P300) in assessment of Hearing aid users	
■ Role of electrophysiological measures in	53
assessment of CI benefit	
IV. MATERIAL AND METHODS	57
V. RESULTS	65
VI. DISCUSSION	85
VII. CONCLUSIONS	94
VIII. RECOMMENDATION	95
SUMMARY	96
REFERENCES	99
ARABIC SUMMARY	

List of Figures

Figure No.	Title	Page No.
Figure (1)	Representative responses from one child to	12
	standard /ga/ and deviant /da/ stimuli and the	
	resultant difference wave obtained by	
	subtracting the standard from the deviant	
	waveform.	
Figure (2)	Schematic illustration of the single-stimulus,	16
	oddball down	
Figure (3)	Schematic illustration of the P300 context-	17
	updating model	
Figure (4)	Schematic representation of brain activation	18
	patterns underlying P3a and P3b generation	
Figure (5)	A graphic explanation of the protocol	24
	typically used to evoke a P300 component	
Figure (6)	Cochlear implant	42
Figure (7)	PTA of the groups under study.	70
Figure (8)	Frequency distribution for the different	72
	causes of hearing loss.	
Figure (9)	P300 latency in msec among different degrees	74
	of hearing loss.	
Figure (10)	P300 latency scores according to speech	77
	performance categories	
Figure (11)	Mean WDS% among different Groups	81
Figure (12)	Mean P300 latency score in msec among	81
	different groups	

Figure No.	Title	Page No.
Figure (13)	Mean duration of hearing loss in years	84
	positive and negative responses of P300 test	
Figure (14)	The percentage of positive and negative	84
	responses in P300 test as regards the regular	
	use of the device	
Figure (15)	Mean WDS% in positive and negative	85
	responses of P300 Test	

List of Tables

Table No.	Title	Page No.
Table (1)	Comparison of the different quantitative	68
	variables among groups 1, 2a and 2B.	
Table (2a)	Comparison among groups 1, 2A and 2B as	69
	regards the gender distribution.	
Table (3b)	The average hearing threshold level in dBHL	70
	at different frequencies in the groups under	
	study.	
Table (3)	Descriptive statistics for the different	71
	quantitative variables in group 2A and 2B.	
Table (4)	Descriptive statistics for the use of the device	71
	in Groups 2A and 2B.	
Table (5)	Frequency distribution for the different	72
	causes of hearing loss in the rehabilitated	
	group (2).	
Table (6)	Comparison among different degrees of	73
	hearing loss as regards P300 Latency scores.	
Table (7)	Comparison between P300 Latency scores (in	74
	msec) between subjects without and with the	
	hearing aid device at different degrees of	
	hearing loss in group 2A.	
Table (8a)	Comparison of P300 latency in msec among	75
	Groups 1, 2A and 2B.	
Table (8b)	Comparison of P300 latency in msec between	75
	males and females in the normal hearing	
	group (1).	

Table No.	Title	Page No.
Table (9a)	Comparisons of P300 latency scores among speech performance categories in the whole rehabilitated group and in the subgroups 2A & 2B.	76
Table (9b)	Comparison of P300 latency scores between (group 2A) and (group 2B) at the different speech performance categories.	77
Table (10a)	Comparison among speech performance categories as regards the different quantitative variables in rehabilitated subjects: (Groups 2A &2B together).	79
Table (10b)	Comparison among speech performance categories as regards the different qualitative variables in rehabilitated subjects: (Groups 2A &2B together).	80
Table (11a)	Comparison between subjects with positive and negative responses of P300 test as regards the different quantitative variables.	82
Table (11b)	Comparison between positive and negative responses of P300 test as regards the regular use of the device.	83
Table (12)	Correlation between P300 latency and the different quantitative variables in the whole rehabilitated group and the 2 subgroups: (2A) and (2B).	85

Table No.	Title	Page No.
Table (13)	Correlation between P300 latency and The	87
	hearing threshold at different frequencies And	
	the average hearing threshold in the hearing-	
	aids users (Group 2A).	