FRACTURE STRENGTH AND GAP DISTANCE OF FOUR-UNIT ALL-CERAMIC BRIDGES USING CEREC-INLAB SYSTEM

Thesis

Submitted to the Faculty of Oral and Dental Medicine, Cairo University in Partial Fulfillment of the Requirements for the Doctor Degree in (Fixed Prosthodontics)

Ву

Shereen Mohamed El-Sayed
B.D.S; M.D.S. (Cairo)
Faculty of Oral Dental Medicine
Cairo University

Supervisors

Dr. Suzanne Mahmoud El-Sayed

Professor of Fixed Prosthodontics

Faculty of Oral and Dental Medicine

Cairo University

Dr. Shereen Adel Amin
Assistant Professor of Fixed Prosthodontics
Faculty of Oral and Dental Medicine
Cairo University

Dedication

This work is gratefully dedicated to the **memory of my mother** who I always wished she could share this

occasion with me.

To my partner in life my dear **husband** for his patience and understanding

To my everlasting support my **father** for his encouragement and motivation

To my beloved mother, **mama Fatma** who provided me care and support and was always there whenever

I need her

To my only **sister** who gave me a lot of her time, unlimited effort and great help throughout this work

And to the smile in my life my **children** for missing me sometimes during the course of my study

ABSTRACT

Forty four-unit anterior and posterior all-ceramic bridges constructed from In-Ceram YZ blocks using Cerec-inLab systems were fabricated. Twenty anterior and posterior metal-ceramic bridges were constructed as a control group. The anterior and posterior bridges, were constructed with two different connector cross-sections (9 mm² and 12 mm²). After construction of all-ceramic and metal-ceramic bridges according to manufacture's instructions, they were cemented on epoxy resin dies using adhesive resin cement. Vertical marginal gap distance was measured using stereomicroscope. Following the vertical marginal gap distance testing, the bridges were subjected to fracture load testing using universal testing machine to evaluate the fracture strength. A set of samples were fabricated for horizontal gap distance testing using strereomicroscope.

It was concluded that:

- The vertical as well as horizontal gap distance of anterior and posterior zirconia all-ceramic fixed partial dentures were within the clinically acceptable range.
- The variation in connector dimensions has a significant effect on fracture load of posterior FPDs, meanwhile it has no effect on anterior FPDs.

Key words: Fracture strength, GAP distance, All-ceramic, Machinable ceramics, Cerec-Inlab, Ceramic blocks

ACKNOWLEDGMENT

I would like to express my sincere thanks and deep appreciation to Dr. **Suzanne Mahmoud El-Sayed**, Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University for her valiable supervision, guidance and continuous encouragement.

I cannot find sufficient words to thank Dr. **Shereen Adel Amin**, Assistant Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University for her valuable suggestions, endless assistance and support. I take this opportunity to show her my gratitude for her supervision and guidance throughout the study.

I wish also to express my thanks to Dr. **Ashraf Hassan Mokhtar**, Professor and Chairman of Fixed Prosthodontics
Department, Faculty of Oral and Dental Medicine, Cairo University
for his support and understanding.

I am also thankful to Dr. **Mohamed Labib Zamzam**, Professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University for his help and effort during laboratory steps.

Thanks are also extended to Dr. **Zenab Nabil Emam**, Lecturer of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University for endless assistance.

I would like to thank my colleague **Ahmed Soliman**, Assistance Lecturer of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University for his help and effort and the time he willingly offered during the laboratory steps.

Last, but not least, I would like to thank my Professors, my colleagues and all the members of the Fixed Prosthodontics Department and all those who participated in making this work possible.

LIST OF TABLES

Table No.	Title	Page
1.	Composition and manufactures of the materials used in this study	64
2.	Samples classification	67
3.	Mean values (µm), standard deviation (SD) values and results of Student's t-test for the comparison between anterior and posterior bridges	125
4.	Mean values (µm), standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between the groups in anterior bridges at the canine retainer	128
5.	Mean values (µm) standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between the groups in anterior bridges at the central incisor retainer	131
6.	Mean values, standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between the groups in posterior bridges at the canine retainer	134
7.	Mean values (μm) standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between the groups in posterior bridges at the molar retainer	137
8.	Mean values (N) standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between fracture load of the four all-ceramic bridge designs	140
9.	Mean values (N), standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between fracture load of anterior all-ceramic and metal ceramic bridges	142
10.	Mean values (N), standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between fracture load of all-ceramic and metal-ceramic posterior bridges	144
11.	Mean values (µm), standard deviation (SD) values and results of Student's t-test for the comparison between anterior and posterior bridges	152

Table No.	Title	Page
12.	Mean values (µm), standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between the three groups in anterior bridges at the canine retainer	155
13.	Mean values (µm) standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between the three groups in anterior bridges at the central incisor retainer	158
14.	Mean values (µm), standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between the three groups in posterior bridges at the canine retainer	161
15.	Mean values (µm), standard deviation (SD) values, results of ANOVA and Tukey's test for comparison between the three groups in posterior bridges at the molar retainer	164

LIST OF FIGURES

Figure No.	Title	Page
1.	Anterior model	69
2.	Posterior model	69
3.	Rubber base impression for the prepared abutment teeth and pontic space of anterior model (a) and posterior model (b)	71
4.	a. Anterior metal model, b. Posterior metal model	72
5.	Silicone duplicates for the anterior metal model (a) and posterior metal model (b)	72
6.	Anterior stone model	73
7.	Posterior stone model	73
8.	Model positioned on the L-shaped holder	75
9.	Cerec-Inlab	75
10.	Scanning of the anterior plaster model	76
11.	Scanning of the posterior plaster model	76
12.	Image of the scanned anterior model on the screen	77
13.	Image of the scanned posterior model on the screen	77
14.	Removal of unwanted regions by entering an open line	79
15.	Designing the framework for anterior model	80
16.	Designing the framework for posterior model	80
17.	Margins of the preparation and pontic (anterior model)	81
18.	Margins of the preparation and pontic (posterior model)	81
19.	Designing the framework (anterior model)	83
20.	Designing the framework (posterior model)	83

Figure No.	Title	Page
21.	Tools for adjustment of bridge framework (anterior model)	84
22.	Tools for adjustment of bridge framework (posterior model)	84
23.	Adjusted bridge framework (anterior model)	85
24.	Adjusted bridge framework (posterior model)	85
25.	Finished restoration in the milling simulation (anterior model)	86
26.	Finished restoration in the milling simulation (posterior model)	86
27.	Checking the outer surface of the framework (anterior model). a. Labial view. b. Palatal view.	87
28.	Checking the outer surface of the framework (posterior model). a. Buccal view. b. Lingual view.	88
29.	Selecting the type of block used for milling	91
30.	Insertion of ceramic block	91
31.	Vita In-Ceram YZ blocks	92
32.	Ceramic blocks inserted in the milling chamber	92
33.	The ceramic framework after milling process (anterior model)	93
34.	The ceramic framework after milling process (posterior model)	93
35.	Vita Zyrcomat furnace	95
36.	The sintered anterior (a) and posterior (b) frameworks ready for porcelain build-up	95
37.	a. Rubber index used for veneering porcelain build-up.b. Split rubber index	98
38.	Anterior (a) and posterior (b) epoxy resin dies	100
39.	Anterior (a) and posterior (b) veneered FPDs cemented on epoxy dies	100

Figure No.	Title	Page
40.	Wax patterns of anterior (a) and posterior (b) bridges	102
41.	Indirect spruing of the wax pattern	105
42.	Anterior (a) and posterior (b) metal frameworks	106
43.	Anterior (a) and posterior (b) veneered ceramometallic FPDs cemented on epoxy models	109
44.	Diagram showing the vertical marginal gap distance	111
	A. Margin of the retainer, B. Margin of the epoxy die	
45.	Angulation Jig	114
46.	Fracture strength testing (Anterior FPDs)	114
47.	Fracture strength testing (Posterior FPDs)	114
48.	A sectioned sample	116
49.	Diagram showing the fixed points used for the horiontal gap distance testing. C : Cervical; A : Axial; O : Occlusal	116
50.	Photomicrograph of anterior 9 mm2 bridge at central incisor retainer	119
51.	Photomicrograph of anterior 9 mm2 bridge at canine retainer	119
52.	Photomicrograph of anterior 12 mm2 bridge at central incisor retainer	120
53.	Photomicrograph of anterior 12 mm2 bridge at canine retainer	120
54.	Photomicrograph of posterior 9 mm2 bridge at canine retainer	121
55.	Photomicrograph of posterior 9 mm2 bridge at molar retainer	121
56.	Photomicrograph of posterior 12 mm2 bridge at canine retainer	122
57.	Photomicrograph of posterior 12 mm2 bridge at molar retainer	122
58.	Photomicrograph of anterior metal-ceramic bridge at central incisor retainer	123

Figure No.	Title	Page
59.	Photomicrograph of anterior metal-ceramic bridge at canine retainer	123
60.	Photomicrograph of posterior metal-ceramic bridge at molar retainer	124
61.	Photomicrograph of posterior metal-ceramic bridge at canine- retainer	124
62.	Mean values of vertical marginal gap distance of anterior and posterior bridges	126
63.	Mean values of the vertical marginal gap distance of anterior bridges at canine retainer	126
64.	Mean values of the vertical marginal gap distance of anterior bridges at central incisor retainer	132
65.	Mean values of the vertical marginal gap distance of posterior bridges at canine retainer	135
66.	Mean values of the vertical marginal gap distance of posterior bridges at molar retainer	138
67.	Mean values of the fracture load of the four all-ceramic bridge designs	141
68.	Mean values of the fracture load of the anterior all-ceramic and metal-ceramic bridges	143
69.	Mean values of the fracture load of posterior all-ceramic and metal-ceramic bridges	145
70.	Photomicrograph of anterior 9 mm2 bridge at central incisor retainer	146
71.	Photomicrograph of anterior 9 mm2 bridge at canine retainer	146
72.	Photomicrograph of anterior 12 mm2 bridge at central incisor retainer	147
73.	Photomicrograph of anterior 12 mm2 bridge at canine retainer	147

Figure No.	Title	Page
74.	Photomicrograph of posterior 9 mm2 bridge at canine retainer	148
75.	Photomicrograph of posterior 9 mm2 bridge at molar retainer	148
76.	Photomicrograph of posterior 12 mm2 bridge at canine retainer	149
77.	Photomicrograph of posterior 12 mm2 bridge at molar retainer	149
78.	Photomicrograph of anterior metal-ceramic bridge at central incisor retainer	150
79.	Photomicrograph of anterior metal-ceramic bridge at canine retainer	150
80.	Photomicrograph of posterior metal-ceramic bridge at canine retainer	151
81.	Photomicrograph of posterior metal-ceramic bridge at molar retainer	151
82.	Mean values of the horizontal gap distance of anterior and posterior bridges of the three groups	153
83.	Mean horizontal gap distance of anterior bridges at canine retainer	156
84.	Mean horizontal gap distance of anterior bridges at central incisor retainer	159
85.	Mean horizontal gap distance of posterior bridges at canine retainer	162
86.	Mean horizontal gap distance of posterior bridges at molar retainer	165
87.	Fracture site of anterior all-ceramic 9 mm2 bridges. a. Labial view, b. Palatal view	168
88.	Fracture site of anterior all-ceramic 12 mm2 bridges. a. Labial view, b. Palatal view	169
89.	Fracture site of posterior all-ceramic 9 mm2 bridges	170

Figure No.	Title	Page
90.	Fracture site of posterior all-ceramic 12 mm2 bridges	170
91.	Fracture site of anterior metal-ceramic bridges	171
92.	Fracture site of posterior metal-ceramic bridges	171
93.	SEM photomicrographs of anterior all-ceramic 9 mm2 bridges	174
94.	SEM photomicrographs of anterior all-ceramic 12 mm2 bridges	175
95.	SEM photomicrographs of posterior all-ceramic 9 mm2 bridges	176
96.	SEM photomicrographs of posterior all-ceramic 12 mm2 bridges	177
97.	SEM photomicrograph of anterior metal-ceramic bridges	178
98.	SEM photomicrograph of posterior metal-ceramic bridges	178

LIST OF CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
AIM OF THE STUDY	63
MATERIALS AND METHODS	64
RESULTS	118
DISCUSSION	179
SUMMARY & CONCLUSIONS	196
RECOMMENDATIONS	199
REFERENCES	200
ARABIC SUMMARY	