Abstract

Tracheal aspirates were isolated from 121 preterm neonates during the first

Week of life to isolate mesenchymal stem cells (MSCs) and Transforming growth

Factor 1 (TGF-B) assay to correlate them with the development of

Bronchopulmonary dysplasta.

The median number of colonis of MSCs in the BPD group was significantly

Higher than those without BPD with a p value 0.011 and the median number of

Vlusters of NSCs in the BPD group was significantly higher than those without

BPD

With a p value 0.003.

The median of TGF-B1 was stgnificantly higher in the BPD group with a p value 0.021.

Key words: mesenchymal stem cells /Preterms/Bronchopulmoary dysplasia.

Predication of Bronchopulmonary Dysplasia by Isolation of Mesenchymal Stromal Cells from Tracheal Aspirates in Preterm Egyptian Neonates

Thesis Submitted for partial fulfillment of MD degree

In Pediatrics By

Amira Mohamed Sabry El Sayed

M.B.B.CH, M.Sc Pediatrics

Faculty of Medicine, Cairo University

Under supervision of

Prof. Dr. Zahraa Ezz El Din Osman

Professor of Pediatrics, Faculty of Medicine, Cairo University

Prof. Dr. Hala Gabr Metwalli

Professor of clinical pathology, Faculty of Medicine, Cairo University

Dr. Yasmine Amr Mansi

Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University

Faculty of Medicine

Cairo University

2013

Acknowledgement

First of all thanks to **ALLAH** *the source of all knowledge* who gave me the power by his abundant grace to produce this work.

I wish to express my appreciation and sincere gratitude to Prof. *Dr Zahraa Ezz El Din*, Professor of Pediatrics, Faculty of Medicine, Cairo University, for her kind help and advice, constant guidance, effort, patience and encouragement.

I am very grateful to Professor *Dr Hala Gabr*, Professor of Clinical pathology, Faculty of Medicine, Cairo University for her appreciable work all through, also for her kind assistance and support.

I would like to express my deep gratitude to *Dr. Yasmine Amr Mansi*, Assistant Professor of Pediatrics, Faculty of Medicine, Cairo University, for her supervision, continuous innovation, also for her kind advice and support.

Also I thank all the staff members of the Pediatrics department for their help and cooperation and a special and sincere gratitude goes to Professor *Dr. Nahed Fahmy Helal*, Professor of Pediatrics and Head of Neonatology unit for her kind help and guidance.

Table of Contents	Page
List of Abbreviation	7
	12
List of Figures	
List of Tables	16
List of Diagrams	18
	19
Introduction and Aim of Work	
Review of Literature	
Part I :Bronchopulmonary Dysplasia	
Chapter (1): Anatomy of the Lungs	21
Chapter(2): Histology of the Lungs	35
Chapter (3):Physiology of the Lungs	41
Chapter (4):Histopathology of BPD	52
Chapter (5):Genetics of BPD	59
Chapter (6): Clinical picture of BPD	63
Chapter (7):Diagnosis of BPD	82
Chapter (8): Prevention of BPD	97
Chapter (9): Treatment of BPD	115
Chapter(10): Complications of BPD	129
Chapter(11): Biomarkers in BPD	134

Part II : Mesenchymal Stem Cells	
Chapter (1): General Characters of MSCs	148
Chapter (2):Isolation and Characterization of MSCs	160
Chapter (3): Differentiation Potentials of MSCs	173
Chapter (4):Applications of MSCs	178
Chapter (5): Stem Cells and the Respiratory System	187
Chapter (6):Stem Cells and BPD	201
Part III: Transforming Growth Factor-β1	214
Methodology	226
Results	240
Discussion	266
Summary	276
Conclusions and Recommendations	279
References	281
Arabic Summary	335

List of Abbreviations

Abbreviations are written in a descending order of their appearance in the review

FGF	Fibroblast growth factors
222	Boundary Income dividue's
BPD	Bronchopulmonary dysplasia
RDS	Respiratory distress syndrome
VEGF	Vascular endothelial growth factor
HCL	Histocompatibility loci
V/Q	Ventilation-perfusion
HMD	Hyaline membrane disease
VLBW	Very low birth weight
RV	Right ventricle
PH	Pulmonary hypertension
NO	Nitrous oxide
FGF	Fibroblast growth factor
CS	Caesarean section
HLA	Histocompatibility loci
SNPs	Single nucleotide polymorphisms
VEGF	Vascular endothelial growth factor
TGF-β1	Transforming growth factor-β1
TNF-α	Tumor necrosis factor alpha

AOE	Anti-oxidant enzyme system
IL	Interleukin
SOD	Superoxide dismutase
ELF	Epithelial lining fluid
PROPHET	Prophylaxis of Early Adrenal Insufficiency to Prevent Bronchopulmonary Dysplasia
СТ	Computed Tomography
TcO2	Transcutaneous oxygen
FRC	Functional residual capacity
PEEP	Positive end expiratory pressure
COIN	Continuous Positive Airway Pressure or Intubation at Birth
СРАР	Continuous positive airway response
SUPPORT	Surfactant Positive Airway Pressure and Pulse Oximetry Trial
PNCS	Postnatal corticosteroids
PTHrP	Parathyroid hormone-related protein
LFA-1	Lymphocyte function-associated antigen 1
ММР	Matrix metalloproteinases
KGF	Keratinocytes growth factor
PHGF	Pulmonary hepatocytes growth factor
ELF	Epithelial lining fluid
IDO	Indoleamine 2,3 dioxygenase
PG	Prostaglandins

TNF	Tumor necrosis factor
DC	Dendritic cells
APC	Antigen presenting cells
GvHD	Graft versus host disease
FCS	Fetal calf cells
DMEM	Dulbecco modified Eagle medium
PGFEP	Platelet growth factor enriched plasma
A1PI	Alpha 1 protinease inhibitor
SDD	Surfactant deficiency disease
CLD	Chronic lung disease
NEC	Necrotizing enterocolitis
IVH	Intraventricular hemorrhage
PVL	Periventricular leucomalacia
ROP	Retinopathy of prematurity
PDA	Patent ductus arteriosus
ACTH	Adreno-cortico-thyroid hormones
GMP	Good manufacturing practices
МНС	Major histocompatibility cells
IF	Interferon
RAS	Renin-angiotensin system
ALI	Acute Lung Injury

ACE	Angiotensin converting enzyme
AT II	Angiotensin II
a1PI	Alpha-1 proteinase inhibitor
FEV1	Forced expiratory volume in 1 second
VLBW	Very low birth weight
CLD	Chronic lung disease
CAP Trial	Caffeine of Prematurity trial
ELBW	Extreme low birth weight
PH	Pulmonary hypertension
CCSP	Clara cell secretory protein
MIF	Macrophage migration inhibitory factor
UCB	Umbilical cord blood
СВ	Cord blood
HSC	Hematopoeitic stem cells
MIAMI	Marrow-isolated adult multipotent inducible cells
MAPC	Multipotent adult progenitor cells
MASC	Mesenchymal adult stem cells
BMSSC	Bone marrow stromal stem cells
FACS	Fluorescence-activated cell sorting
FCS	Fetal calf serum
HPP- MCFC	High proliferative potential mesenchymal colony forming cells

LPP- MCFC	Low proliferative potential mesenchymal colony forming cells
MCC	Mesenchymal cell clusters
CFU-F	Colony-forming unit fibroblasts
IGFBP	Insulin-like growth factor-binding protein
TIMP	Tissue inhibitor of metalloproteinase
VSM	Vascular smooth muscle.
OI	Osteogenesis Imperfecta
SCI	Spinal cord injury
MSC-CM	MSC-conditioned media
hAFSC	Human amniotic fluid stem cell
Ang1	Angiopoitin-1
PDGF	Platelet- derived growth factor
VEGF	Vascular endothelial growth factor
LAK	Lymphokine-activated killer
LAP	Latency-associated protein

List of Figures

Figures No.		Page
Figure (1):	Stages in development of the trachea and lungs	23
Figure (2):	Expansion of the lung buds into the pericardioperitoneal canals	23
Figure (3):	Separation of the pleural cavities	24
Figure (4):	The number of airway generations in the human lung and the stage and gestational age at which they appear	25
Figure (5):	Schematic longitudinal section of a primary lobule of the lung	26
Figure (6):	Front & Mediastinal Views of the Heart and Lungs	27
Figure (7):	Phases of Lung Development in Man	28
Figure (8):	Photomicrographs illustrating the classical stages of fetal lung development	29
Figure (9):	Development of the Lungs at Birth	30
Figure (10):	Pulmonary vessels, seen in a dorsal view of the heart and lungs	33
Figure (11):	Stages of Lung Development	36
Figure (12):	Assembly of surfactant	37
Figure (13):	Schematic presentation of the life cycle of surfactant	39
Figure (14):	Variability in Compliance in Different Respiratory disorders	46
Figure (15):	Work of Breathing Cycle Shown on a Pressure Volume Diagram of One Respiratory Cycle	47
Figure (16):	Early metaplastic change in bronchial epithelium due to oxygen toxicity	53

Figure (17):	Bronchopulmonary dysplasia	54
Figure (18):	Pathology of Bronchopulmonary dysplasia	55
Figure (19):	The pathogenesis of BPD	68
Figure (20):	Proposed paradigm for the evolution of BPD	69
Figure (21):	BPD stage 1 (Northway classification)	85
Figure (22):	BPD stage 3 (Northway classification)	85
Figure (23):	BPD stage 4 (Northway classification).	86
Figure (24):	Chest X rays in a Twenty-four week premature boy infant	87
Figure (25):	Wilson–Mikity syndrome	89
Figure (26):	CT Scan in a Day 42 preterm neonate with BPD	90
Figure (27):	CT Angiography in BPD	92
Figure (28):	Pressure - Volume Curve in static pulmonary function testing	95
Figure (29):	A lung autopsy of a 3-month- infant suffering from bronchopulmonary dysplasia	96
Figure (30):	Stem Cells	149
Figure (31):	The hierarchy of stem cells	151
Figure (32):	The Stages of Embryogenesis	152
Figure (33):	Derivation & Use of Embryonic Stem Cell Lines	153
Figure (34):	Steps of Culturing of MSCs	157
Figure (35):	Early and late outgrowth EPC in blood vessel formation	162

Figure (36):	Schematic illustration of relationship between cell viability and yield vs.	164
	selection of dissociation enzymes and incubation time	
Figure (37):	MSCs morphology	165
Figure (38):	Various cell morphologies were observed in response to the cell culture	167
	plate coatings	
Figure (39):	Differentiation of bone marrow derives adult stem cells	168
Figure (40):	Differentiation potential of human mesenchymal stem cells along the mesengenic lineage	174
Figure (41):	Osteogenic, chondrogenic, adipogenic, and vascular smooth muscular differentiation capacity assessed by staining of BM-derived MSCs	175
	cultured in different expansion media	
Figure (42):	Mechanism of MSC Differentiation	176
Figure (43):	Clinical applications of MSC	177
Figure (44):	Origin of cancer stem cell and implementation to tumor therapy	181
Figure (45):	Stages of the developing lung in rats and humans	184
Figure (46):	The 3 R's of lung homeostasis	193
Figure (47):	Cells of the respiratory tract	194
Figure (48):	Lung Anatomy and Lung Stem Cells	196
Figure (49):	Therapeutic opportunities with stem cells for lung regeneration.	206
Figure (50):	Therapeutic effect of bone marrow MSC in experimental O ₂ -induced	208
	BPD in newborn rats	
Figure (51):	The epithelial-mesenchymal wound model for lung injury and repair	212
Figure (52):	Schematic representations of the microenvironmental influences on	218
	resident lung mesenchymal stem cell function during tissue homeostasis	
	and disease.	

Figure (53):	Effect of TGF-β1 treatment on human bone marrow MSCs and normal human lung fibroblasts	221
Figure (54):	The Functions of TGF-β1 on Different Cells	225
Figure (55):	Incidence of Maternal illnesses	242
Figure (56):	Demographic Data of the Preterm Infants	243
Figure (57):	The Outcome of the Preterm Infants	245
Figure (58):	Comparison of the 2 groups with MSCs and without MSCs	248
Figure (59):	High power view of MSCs cluster at Day 15 (Inverted Microscope 40X)	250
Figure (60):	High power view of MSCs colony at Day 15 (Inverted Microscope 40X)	250
Figure (61):	High power view of MSCs, large Colony at Day 15 (Inverted Microscope 40X	250
Figure (62):	Small clusters at day 15	250
Figure (63):	Small clusters are detected using High power microscopy	251
Figure (64):	Colonies (small and large) and clusters using high power microscopy	251
Figure (65):	Lower power Microscopy showing Colonies and clusters at Day 15	251
Figure (66):	A Large Colony with High power microscope	251
Figure (67):	MNC colonies before and after decant (attached colonies)	252
Figure (68):	MSC s culture Day 6	252
Figure (69):	MSCs culture Day 7	253
Figure (70):	MSCs culture Day 8	253
Figure (71):	MSCs culture Day 11	254
Figure (72):	MSCs increased in size and number Day 21 culture	254

List of Tables

		Page
Table (1):	Definitions of BPD	66
Table (2):	Pulmonary Biomarkers, proposed physiologic roles and alteration in BPD	77
Table (3):	Radiological and pathological classification of BPD according to Northway et al; 1967	84
Table (4):	Simple Chest radiograph Scoring System	88
Table (5):	Potential Strategies to Prevent BPD	98
Table (6):	Adult stem cells	156
Table (7):	Surface markers used to characterize human MSCs.	170
Table (8):	Selected Genes Up-Regulated in Neonatal lung Mesenchymal Stromal Cells relative to Fetal/Neonatal Lung Fibroblasts	172
Table (9):	Various Types of Progenitor cells and their specific markers	196
Table (10):	A representative (not exhaustive) list of candidate endogenous lung stem/progenitor cells in the rodent lung	198
Table (11):	Incidence of maternal illnesses &chorioamnionitis in the mothers	242
Table (12):	Demographic data of the preterms	243
Table (13):	The means & standard deviations of different demographic data	244
Table (14):	Clinical data at birth	244
Table (15):	The Outcome of the Preterm Infants	245
Table (16):	The median & standard deviation on duration of stay on different oxygen devices	246
Table (17):	Isolation & Morphology of MSCs	248