# Laparoscopic management of colorectal cancer

#### **Essay**

# Submitted for partial fulfillment of master degree in general surgery

Presented by

Bassem Bebawi Ayad (MB.B.CH)

#### **Supervisors**

#### Prof. Ashraf Farouk Abadeer

Professor of general surgery Ain Shams University

#### Dr. Hesham Adel Alaa El-Din

Assist. Prof. of general surgery Ain Shams University

#### **Dr. Mohamed Ezzat Elserafy**

Lecturer of general surgery Ain Shams University

Faculty of medicine Ain Shams University 2009

#### **List of abbreviatins**

• **AAPC:** Attenuated familial adenomatous polyposis.

• ACPS: Australian Clinical-Pathological Staging.

• **APC:** Adenomatous polyposis coli.

• **APR:** Abdominoperineal resection.

• **CEA:** Carcinoembryonioc antigen.

• **CIN:** Chromosomal instability.

• **CLASICC:** Conventional Vs Laparoscopic-Assisted Surgery in Colorectal cancer.

• **C.R.C:** Colorectal carcimona.

• **C.T:** Computed tomography.

• **DALM:** Dysplasia-associated lesion or mass.

• **DCC:** Deleted in colorectal carcinoma.

• **DCBE:** Double contrast barium enema.

• **DVT:** Deep venous thrombosis.

• **EAES:** European association of endoscopic surgery.

• **EEA:** End to end anastomosis.

• ERUS: Endo rectal ultrasound.

• **FAP:** Familial adenomatous polyposis.

• **FOBT:** Fecal occult blood testing.

• **FS:** Flexible sigmoidoscopy.

• **GITSG:** Gastrointestinal tumor study group.

• **HALS:** Hand-assisted laparoscopic surgery

• **HCG:** Human chrionic gonadotrophin.

• **HNPCC:** Hereditary non polyposis rectal cancer.

• **IBD:** Inflammatory bowel disease.

• **LEA:** Large external antigen.

• **LHC:** Left hemicolectomy.

• **LOH:** Loss of heretozygosity.

• MGMT: Methylguanine DNA methyltransferase.

• **MRC:** Magnetic resonance colography.

• **MRI**: Magnetic resonance imaging.

• **MSI:** Microsatellite instability.

• **PET:** Positron Emission tomography.

• **RCT:** Randomized comparative trials.

• **RER:** Replication error.

• **RHC:** Right hemicolectomy.

• TME: Total mesorectal excision.

• UC: Ulcerative colitis.

• **U.K:** United Kingdom.

• **U.S:** United States.

• WHO: World health organization.

# **Acknowledgement**

First of all I would like to thank **professor doctor Ashraf**Farouk Abadeer, prof. of general surgery, Ain Shams
University, for his support and invaluable professional and scientific discussion.

Also I would like to thank **professor doctor Hesham Adel Alaa El-Din**, assistant professor of general surgery, Ain
Shams University, for his thoughtful comments and suggestions which helped me a lot in this study.

I sincerely appreciate the assistance of **Doctor Mohamed Ezzat El-Serafy,** lecturer of general surgery Ain Shams
University who greatly contributed to the initiation of this study.

Finally, I want to express my love and appreciation for my great family and my friends who prayed and helped me a lot in every moment in my life.

# **List Of Figures**

|   |                                                           | <b>Page</b> |
|---|-----------------------------------------------------------|-------------|
| • | Fig (1-1): Shows structure behind the left colon.         | (11)        |
| • | Fig (1-2): Shows structure behind and lateral the sigmoid |             |
|   | Colon.                                                    | (11)        |
| • | Fig (1-3): Shows structure behind transverse colon.       | (11)        |
| • | Fig (1-4): Shows structure behind right colon.            | (11)        |
| • | Fig. (1-5): Shows Sup. Mesenteric artery.                 | (13)        |
| • | Fig. (1-6): Shows Inf. Mesenteric artery.                 | (13)        |
| • | Fig (1-7): Shows lymphatic Drainage of RT colon.          | (17)        |
| • | Fig (1-8): Shows lymphatic drainage of transverse         |             |
|   | & left colon.                                             | (17)        |
| • | Fig (2-1): Schemtic showing progression from normal       |             |
|   | colonic epithelium to carcinoma of the colon.             | (27)        |
| • | Fig (2-2) ): Shows distribution of carcinomas in colon.   | (31)        |
| • | Fig (2-3) ): Shows adenocarcinoma of colon.               | (45)        |
| • | Fig (2-4) ): Shows adenocarcinoma of colon.               | (45)        |
| • | Fig (2-5) : Shows adenocarcinoma of colon.                | (45)        |
| • | Fig (2-6): Shows Microscopic feature of adenocarcinoma    |             |
|   | in colon.                                                 | (45)        |
| • | Fig (2-7): Shows Microscopic feature of adenocarcinoma    |             |
|   | in colon.                                                 | (45)        |
| • | Fig (3-1): show CT With double contrast Of cancer colon.  | (92)        |
| • | Fig (3-2): show Colonoscopic feature Of cancer colon.     | (92         |
| • | Fig (3-3) show double contrast barium enema Of cancer of  | olon (92    |

| • | Fig (4-1) :show Extended right Hemicolectomy for cancer               |           |  |
|---|-----------------------------------------------------------------------|-----------|--|
|   | Hepatic flexure of colon.                                             | (99)      |  |
| • | Fig (4-2) :show Extended right Hemicolectomy                          |           |  |
|   | For cancer Transverse colon.                                          | (99)      |  |
| • | Fig (4-3) :show rectosigmoid resection For cancer                     |           |  |
|   | Sigmoid colon.                                                        | (99)      |  |
| • | Figure (5-1):A, operating room setup for right colectomy. B           | ,         |  |
|   | Operating room setup for left colectomy, low ar                       | nterior   |  |
|   | resection, and abdominal perineal resection                           | (126)     |  |
| • | Figure(5-2): The rectum is retracted cephalic and the junction        | on of the |  |
|   | visceral and parietal peritoneum is incised.                          | (129)     |  |
| • | Figure(5-3): Division of the lateral peritoneal attachments.          | (129)     |  |
| • | • Figure (5-4): Division of the hepatic flexure attachments. The cold |           |  |
|   | is retracted caudal through the LLQ port site while the attack        | nments    |  |
|   | are divided via an instrument introduced through the suprabo          | ubic      |  |
|   | port.                                                                 | (129)     |  |
| • | Figure (5-5): Detachment of the Proximal transverse colon             | from the  |  |
|   | omentum.                                                              | (129)     |  |
| • | Figure(5-6):Dissection and isolation of the ileocolic artery.         | (130)     |  |
| • | Figure(5-7): Division of the ileocolic artery. The right branc        | h of the  |  |
|   | middle colic artery is divided in the similar manner.                 | (130)     |  |
| • | Figure(5-8): Extracorporeal hand-sewn anastomosis.                    | (130)     |  |
| • | Figure(5-9): Endoscopic transection of the transverse colon           | using a   |  |
|   | linear stapler.                                                       | (131)     |  |
|   |                                                                       |           |  |

- Figure(5-10): After alignment of bowel, endoscopic stapler is inserted into the enterotomies and then fired. (131)
- Figure (5-11): Closure of the entrotomies with the linear stapler. (131)
- Figure (5-12): Division of the lateral peritoneal attachments of the sigmoid colon. The peritoneum is incised cephalad to facilitate mobilization of the left colon. (134)
- Figure (5-13): Division of the lateral attachments of the splenic flexure. After the Flexure is mobilized, dissection is continued medially and the lesser sac is entered from a lateral approach. (134)
- Figure(5-14): Division of the inferior mesenteric artery. (134)
- Figure (5-15): Posterior dissection of the rectum begins at the pelvic brim. The rectum is suspended from a Grasper introduced through the LLQ port site. This aids in identification of the avascular Plane.

  posterior to the rectum. (135)
- Figure(5-16): Dissection in the avascular plane should be carried as far as possible posteriorly. (135)
- Figure (5-17): Intracorporeal anastomosis using an EEA stapling device. (135)
- Figure (5-18): Intracorporeal division of the proximal sigmoid colon after completion of the rectal dissection. (135)
- Figure (5-19): Delivery of the distal left colon through the LLQ port site for maturation as an end colostomy. (136)

#### **List of tables**

|   |                                                          | <u>Pages</u> |
|---|----------------------------------------------------------|--------------|
| • | Table (2-1): staging chart for colorectal cancer.        | (62)         |
| • | Table (4-1): Standard resections of the colon.           | (98)         |
| • | Table (5-1): Reported conversion rates in studies on     |              |
|   | laparoscopic resection of colorectal cancer.             | (138)        |
| • | Table (5-2): Duration of surgery of open versus          |              |
|   | laparoscopic resection of colorectal cancer.             | (139)        |
| • | Table (5-3): Number of lymph nodes and extent            |              |
|   | of resection.                                            | (140)        |
| • | Table (5-4): Morbidity in open versus laparoscopic       |              |
|   | resection of colorectal cancer.                          | (141)        |
| • | Table (5-5): Complication rate of laparoscopic resection |              |
|   | of colorectal cancer in an analysis of 11 studies.       | (142)        |
| • | Table (5-6): Length of hospital stay in open versus      |              |
|   | laparoscopic resection of colorectal cancer.             | (143)        |
| • | Table (5-7): Post operative analgesia in open versus     |              |
|   | laparoscopic resection of colorectal cancer.             | (144)        |
| • | Table (5-8): Gastrointestinal function after open versus |              |
|   | laparoscopic resection of colorectal cancer              | (145)        |
| • | Table (5-9): Start of postoperative oral intake after    |              |
|   | laparoscopic resection of colorectal cancer.             | (146)        |
| • | Table (5-10): Overall survival rates after open versus   |              |
|   | laparoscopic resection of colorectal cancer.             | (147)        |

• Table (5-11): Disease-free survival rates after open versus laparoscopic resection of colorectal cancer. (148)

• Table (5-12): Port site metastasis after resection of colorectal carcinoma. (149)

• Table (5-13): Case report on port site metastasis. (150)

# **List of contents**

|                                    | Page |
|------------------------------------|------|
| 1. Introduction                    | 1    |
| 2. Aim of the work                 | 4    |
| 3. Review of lectures              |      |
| • Anatomy                          | 5    |
| • Pathology                        | 21   |
| • Diagnosis                        | 63   |
| • Traditional Operative procedures | 93   |
| • Laparoscopic management          |      |
| Of colorectal cancer               | 119  |
| 4. Summary                         |      |
| 5. Reference                       | 157  |
| 6. Arabic summary                  | 183  |

# Aim of the work

The aim of this study is to evaluate the feasibility of laparoscopic management of colorectal cancer to highlight the indications, benefits, limitations, results and complications of laparoscopic management of colorectal cancer.

### **Intoduction**

Colorectal cancer is the third most common form of cancer and the second leading cause of cancer-related death in the western world.

Colorectal cancer causes 655,000 deaths world wide per year. (1)

Around 100 new cases of colorectal cancer are diagnosed each day in the UK and it is the third most common cancer after breast and lung. (2)

Colorectal cancer in Egypt has no age predilection and more than one-third of tumors affect a young population. (3)

The feasibility of using laparoscopic techniques to resect potentially curable colorectal cancer was established within a few years after the advent of the laparoscopic revolution in the late eighties and a number of enthusiastic surgeons have carried the banner for laparoscopic colorectal surgery despite the absence of data from large randomized controlled trials. (4-6)

The potential advantages of laparoscopic assisted surgery for major organ surgery have been well documented, with decreased hospital stay, less post operative pain and quicker return normal function. (7)

The first and perhaps most important of the concerns which have been raised against laparoscopic colorectal cancer surgery was whether or not those surgeons who practiced the approach were performing resections which were as radical as those undertaken by conventional open approaches. Reports from single-center and multicenter large retrospective series suggested that the pathological margins of the resected specimens were not less extensive than those removed by conventional open surgery. (8)

The CLASICC (Conventional Vs Laparoscopic-Assisted Surgery in Colorectal cancer) trial did highlight that in those patients undergoing sphincter-preserving surgery for rectal cancer, there was a higher (but statistically non significant) incidence of positive circumferential resection margins in those undergoing laparoscopic surgery than in those who had open surgery. (9)

The positive resection margins in the laparoscopic group has clinically implications in terms of local recurrence remains to be seen, but the long term recurrence rates in this trial are under analysis at the time of writing. (10)

The pathological data thus far confirm approach and the open operation, but pending the analysis of clinical results in terms of local recurrence and survival, some caution is required before the laparoscopic approach can be widely adopted for sphincter preserving resections of rectal cancer. (11)

The next most disturbing aspect of laparoscopicassisted surgery for colorectal cancer which deterred many surgeons from adopting the approach relates to the possibility that is associated with atypical patterns of recurrence such as cerebral metastases (12), peritoneal metastases (13), and port-side metastases (14).

At present it seems appropriate to say that laparoscopicassisted surgery for colonic cancer possesses some shortterm advantages and produces long-term oncological results which are at least as good as conventional open surgery. (15).

It is the cancer patient; however, who stands to potential benefit more from a minimally invasive approach due to the decreased immune paresis should allow less tumor recurrence and improve patient survival as well as quality of life. (16).