CLONING AND CHARACTERIZATION OF AZURIN GENE FROM *PSEUDOMONAS AERUGINOSA*

A Thesis

Presented to

Cairo University

Вy

Howayada Mahany Mostafa

M. Sc. in Biochemistry

Faculty of Science, Cairo University, 2007

For

The Degree of Philosophy Doctorate (Ph.D. in Chemistry)

(Bio Chemistry)

2009

CLONING AND CHARACTERIZATION OF AZURIN GENE FROM PSEUDOMONAS AERUGINOSA

A Thesis

Presented to

Cairo University

By

Submitted by

Howayada Mahany Mostafa

M. Sc. in Biochemistry

Faculty of Science, Cairo University, 2007

For

The Degree of Philosophy Doctorate (Ph.D. in Chemistry)

(Bio Chemistry)

Supervised by

Assoc. Prof. Mervat El Sayed
Assoc. Prof. of Biochemistry
Cairo University

Dr. Said Abdel Fattah

Lecturer of Biophysics

Cairo University

APPROVAL SHEET FOR SUBMISSION

Title of the Ph.D. Thesis:

Cloning and characterization of azurin gene from Pseudomonas aeruginosa

Name of Candidate: Howayada Mahany Mostafa

The thesis has been approved for submission by the supervisors:

1- Assistant prof. Dr: Mervat El sayed Mohamed

Assistant professor of Biochemistry, Chemistry Department, Faculty of Science, Cairo University

Signature: Merwat El- Sayed

2- Dr. Said Abdel Fattah Ali Taha

Lecturer of biophysics, Biophysics Department Faculty of Science, Cairo University

Signature: Swet Ana

Prof. Dr. Mohamed M. Soukry

Head of the Chemistry Department Faculty of Science - Cairo University

ABSTRACT

Name

: Howayada Mahany Mostafa

Title of thesis: Cloning and characterization of azurin gene from *Pseudomonas*

aeruginosa.

Degree

: Ph.D. degree in science.

This work has been carried out to investigate the cloning and characterization of azurin gene, Pseudomonas aeruginosa was isolated and identified which produce azurin gene. Azurin was cloned in pEM®-T easy vector, Then the gene was subcloned into the E. coli overexpression vector pET-28a. The SDS PAGE analysis showed that the gene was overexpressed in E. coli The recombinant protein was purified by one-step purification using Ni⁺⁺ resin. The antitumor effect of azurin was examined and detected by enters different cancer cells selectively, but not in any of the normal cell tested. This recombinant protein could potentially be used as a vehicle for cancer-targeted

Key words: Pseudomonas aeruginosa, azurin gene, cloning in E.coli.

Supervisors:

chemotherapy

Assistant prof. Dr: Mervat El sayed Mervat El- Sayed

Dr: Said Abdel Fattah

Prof.Dr: Mohamed M. Soukry

Chairman of Chemistry Department Faculty of Science - Cairo University

<u>Acknowledgement</u>

This work would not have been possible without the help of many people.

First, I wish to express my deepest gratitude and my great respect to my supervisor Assistant Prof. **Dr. Mervat El Sayed**, Associate Professor of Biochemistry, Faculty of Science, Cairo University for her help in the research point and her deep insights and illuminating comments that made this work possible. Her supervision for this thesis is a real proud for me.

I wish to express my profound gratitude to my supervisor **Dr. Said Abdel Fattah**, Lecturer of Biophysics, Faculty of Science,

Cairo University, who showed me the rest of the way and supported me to accomplish this work successfully.

I would like also to thank my colleagues in Biochemistry laboratory, Faculty of Science, Cairo University for their help.

Iam deeply grateful to my loving parents my lovely mother, my great father, to whom I am very much indebted and will be forever.

Words can't express my deep emotions for my soul mate **Khaled**,
Who empowered me to finish this work through his love, Care and
encouragement.

Finally, I appreciate very much the moral support I got from my dear sisters and my brother.

CONTENTS

	Page
Table of contents	i
List of Tables.	vii
List of Figures	viii
List of Abbreviations	xi
CHAPTER I:INTRODUCTION & AIM OF THE WORK:	
I.1. Pseudomonas aeruginosa	1
I.1.1. Pseudomonas aeruginosa Characteristics	2
I.1.2. Pseudomonas aeruginosa Diagnosis	5
I.1.2.1. Treatment	6
I.1.2.2. Antibiotic Resistance	7
I.1.2.3. Prevention	8
I.1.3. Pseudomonas aeruginosa Invasion	8
I.1.4. Pseudomonas aeruginosa Pathogenesis	9
I.1.5. <i>Pseudomonas aeruginosa</i> Dissemination	12
I.1.6. Pseudomonas aeruginosa Toxinogenesis	13
I.1.7. Cell Surface Polysacharides	16
I.1.8. Host Defence	17
I.1.9. Genomic diversity	18
I.2. Azurin Structure and the Aarchitecture of the Active Site	19

I.2.1. Azurin Redox properties	26
I.2.2. Biological function and importance of Azurin	28
I.2.3. Bacterial Redox Protein Azurin, Tumor Suppressor Protein p53, and Regression of Cancer	30
I.2.4. Bacterial Protein Azurin as a Novel Anticancer Agent	33
I.2.5. Anticancer drugs from bacteria	37
Aim of the work	41
CHAPTER II: MATERIALS & METHODS:	
II.1.1. Materials and equipments	42
II.1.1.1. Chemicals.	42
II.1.2. Enzymes	43
II.1.3. Molecular biology standards and kits	43
II.1.4. Equipment	44
II.1.5. Strains, media and cultures	45
II.1.5.1. Strains	45
II.1.6. Media	46
II.1.7. Plasmids	46
II.1.7.1. pGEM®-T Easy Vector	46
II.1.7.1.1. Multiple Cloning Sequence	48

II.1.7.1.2. pGEM®-T Easy Vector Map and Sequence Reference Points	49
II.1.8. <i>pET-28a</i>	50
II.2. Methods	52
II.2.1. Isolation of <i>Pseudomonas aeruginosa</i>	52
II.2.2. Identification of bacterial strain	52
II.2.2.1. DADE BEHRING Micro Scan® Dried Gram Negative	52
II.2.2.2. Identification by 16S ribosomal RNA gene sequencing	53
II.2.2.2.1. Rapid preparation of genomic DNA from bacterial colonies	53
II.2.2.2.2. PCR amplification of 16S rRNA gene	53
II.2.2.2.3. Agarose Gel Electrophoresis	54
II.2.2.2.4. Purification and partial sequence analysis of the PCR Product	55
II.2.3. Ligation of the PCR fragment carrying azurin in to pGEM®-T Easy Vector	55
II.2.4. Transformation of the ligated DNA in to <i>E.coli</i> competent Cells	56
II.2.4.1. Growth and preservation of bacterial strains	56
II.2.4.1.1. <i>E.coli</i>	56
II.2.4.2. Transformation of the ligated DNA into <i>Ecoli</i> Comptent cells	57

II.2.4.2.1. Preparation of competent cells	57
II.2.4.2.2. Transformation of competent <i>E.coli</i> cells	57
II.2.5. Mini plasmid preparation of plasmid carry azurin fragment	57
II.2.6. Restriction Enzyme Digest of DNA	58
II.2.6.1. Restriction endnucleases	58
ii	
II.2.6.1.1. Digestion of the produced plasmid by <i>EcoRI</i> and <i>Hind III</i> to release the Azurin fragment	58
II.2.7. Large Scale Plasmid Preparation of Azurin	58
II.2.8. Small Scale Preparation of the over express Plasmid pET-28a	58
II.2.9. Subcloning of Azurin gene in to the over expression vector pET-28a as <i>EcoRI</i> / <i>Hind III</i> fragments	59
II.2.9.1. Large Scale digestion of pET-28a by EcoRI / Hind III	60
II.2.9.2. Large Scale digestion of pGEM- Azurin by <i>EcoRI / Hind III</i> to release the AZURIN fragment	61
II.2.9.2.1. Digestion of pGEM-AZURIN	61
II.2.9.3. DNA Extraction from Agarose Gel	61
II.2.9.4. Cloning of Azurin gene in <i>E.coli</i>	61
II.2.9.5. Primer design for PCR amplification of azurin gene	62
II.2.9.6. PCR amplification of gene sequence	63

II.2.9.6.1. DNA Sequence analysis			
II.2.9.7. Ligation of AZURIN in to pET-28a (EcoRI / Hind III)	63		
II.2.9.7.1. Ligation of DNA and subsequent transformation of the ligated DNA in to <i>E.coli</i> Competent Cells			
II.2.9.8. Transformation of the ligated DNA in to <i>E.coli</i> competent cells	64		
II.2.9.8.1. Preparation of competent cells	64		
II.2.9.8.2. Transformation of competent <i>E.coli</i> cells	65		
II.2.9. Miniplasmid Preparation of the AZURIN Insert in pET-28 (pET AZU-28)	65		
II.2.10. Expression Study on pETAZU-28	65		
II.2.10.1. Introduction of construct (pETAZU28) to <i>BL21</i>	65		
II.2.10.2. Expression of recombinant protein in <i>BL2</i> 1	66		
II.2.11.SODIUM DODECYLSULPHATE-POLYACRYLAMID GEL ELECTROPHORESIS (SDS-PAGE)	67		
II.2.11.1. Total protein extraction.	68		
II.2.12. Purification of soluble protein under nature condition	68		
II.2.13. Native – PAGE with low toxicity staining	69		
II.2.14. Bradford Protein Concentration Assay	70		
II.2.15. Measurment of Potential cytotoxicity by SRB assay	72.		

CHAPTER III: RESULTS:

III.1. Isolation of <i>Pseudomonas aeruginosa</i>		
III.1.1. Characterization and identification of isolated bacteria	73	
III.1.2. Identification of the bacterial isolate by 16S rRNA gene (PCR amplification)	77	
III.1.2.2. DNA sequence analysis of 16S rRNA gene	78	
III.1.2.3. Identification of the 16S rRNA sequence by sequence similarity search.	80	
III.2. Cloning of azurin gene in pGEM®-T Easy Vector	82	
III.2.1. Primer design and PCR amplification of Azurin gene	82	
III.2.2. Large Scale Plasmid Preparation of Azurin	83	
III.3. Subcloning of Azurin into over expression vector pET-28a as <i>EcoR1/Hind III</i> fragments	84	
III.3.1. Preparation and Screening of construct (pETAzu28) by restriction enzymes analysis	84	
III.3.3. Partial sequence analysis of amplified Azurin gene	85	
III.5. Gene expression and protein analysis in <i>E.coli</i>	90	
III.6. Purification of protein under nature conditions	93	
III.7. Native-PAGE with low toxicity	94	
III.8. Bradford Protein Concentration Assay	95	

III.9. Measurement of Potential cytotoxicity by SRB assay	
DISSCUSION AND CONCLUSION	99
ENGLISH SUMMARY	104
<u>REFERENCES</u>	105
ARABIC SUMMARY	

LIST OF TABLES

		Page
Table(1.1)	: Summary of the Virulence Determinants of Pathogenic <i>Pseudomonas aeruginosa</i>	14
Table(2.1)	: Comparison of PCR Product Properties for Thermostable DNA Polymerases	47
Table(2.2)	: Stock solutions amounts required for separating gel preparation	67
Table(2.3)	: Stock solution amounts required for separating gel preparation	69
Table(2.4)	: Preparation of test samples for the Bradford protein	71
Table(3.1)	: NCBI BLAST results for partial 16S rRNA sequence of the bacterial isolate. The most closely related species, GenBank accession numbers and similarity percentage are displayed	81
Table(3.2)	: BLAST results for the entered nucleotide sequence of partial azurin gene from <i>Pseudomonas aeruginosa</i> .	86
Table (3.3)	: Absorbance of BSA and protein sample after 5 minutes	95
Table (3.4)	: Absorbance of BSA and protein sample after 1 hour.	95
Table(3.5)	BSA absorbance and calculated concentration was used to determined protein concentration.	96
Table (3.6)	: Azurin cytotoxixity	97

LIST OF FIGURES

		<u>Page</u>
Figure(1.1)	: Pseudomonas aeruginosa on an XLD agar plate	2
Figure (1.2)	: Pseudomonas aeruginosa colonies on agar	4
Figure(1.3)	: The soluble blue pigment pyocyanin is produced by many, but not all, strains of <i>Pseudomonas aeruginosa</i>	5
Figure (1.4)	: Pseudomonas infection of the hand	10
Figure(1.5)	: Pseudomonas aeruginosa Scanning electron micrograph. CDC	16
Figure (1.6)	: Azurin structure	19
Figure(1.7) (a,b)	: Schematic structure of <i>P. aeruginosa</i> azurin (1azu.pdb). (<i>A</i>) Backbone diagram with His-117 (to the right) and His-46 (to the left) shown in blue stick representation. (<i>B</i>) Space-fill representation with His-117 shown in black color. In contrast, His-46 is not visible from the surface of the protein (note that the view in <i>B</i> is rotated with respect to that presented in <i>A</i>)	24
Figure(2.1)	: The promoter and multiple cloning sequence of the pGEM®-T Easy Vector. The top strand of the sequence shown corresponds to RNA synthesized by T7 RNA polymerase. The bottom strand corresponds to the RNA synthesized by SP6 RNA polymerase	48
Figure(2.2)	: pGEM®-T Easy Vector circle map and sequence reference points	49

Figure (2.3)	:	Showing map and features of <i>pET</i> -28a	51
Figure(2.4)	:	Cloning strategy used in synthesis of <i>pGEMAZU</i> construct	56
Figure(2.5)	:	Cloning strategy used in synthesis of <i>pETAZU28</i> construct	60
Figure(2.6)	:	Engineered Azurin after introducing the restriction enzyme sites	62
Figure(3.1)	:	Comprehensive Panel Status Report	74
Figure (3.2)	:	Microbiology Report	75
Figure(3.3)	:	Agarose gel electrophoresis of amplified 16S rRNA gene of bacterial isolate	77
Figure(3.4)	:	Sequence chromatogram of amplified 16S rRNA gene of the isolate strain using 1512r primer	78
Figure (3.5)	:	DNA segment pf 16S rRNA gene of the isolate was sequensed using 1492r primer.	79
Figure (3.6)	:	Sequence alignment of amplified 16S rRNA gene of <i>Pseudomonas aeruginosa</i> (GenBank accession no. X07317.1) puplished on NCBI database	80
Figure (3.7)	:	Agarose gel electrophoresis of amplified azurin gene of <i>Pseudomonas aeruginosa</i>	82
Figure (3.8)	:	Restriction enzymes digestions of pGEMAzu construct	83
Figure (3.9)	:	Restriction enzymes digestions of pETAzu28 construct	85