Evaluation of Lipocalin in diagnosing acute kidney injury in Egypt

Thesis submitted in partial fulfillment of master degree of internal medicine

By

Dr.walid Mohamed Moheb MB, BCh

Supervised by Prof.Dr.Mohamed Salem

Professor of Internal Medicine
Faculty of medicine
Cairo University

Prof.Dr.Hazem Atta

Professor of Biochemistry

Faculty of medicine

Cairo University

Dr. Seham Bakry

Assistant Professor of Internal Medicine
Faculty of medicine
Cairo University

Faculty of Medicine Cairo University_2009

ACKNOWLEDGMENT

"FIRST OF ALL THANK ALLAH"

I thank God for all his blessings and giving, particularly the blessing of being surrounded by loving, supportive family and friends who help me a lot.

I would like to express my admiration and deepest gratitude to my dear **professor Dr.Mohamed Salem** Professor of

Internal Medicine, Cairo University, for his continuous support, encouragement, patience and kindness, her sincere attitude and gentleness will always be inspiriting to me.

I am grateful for the help of my professor Dr. Hazem Atta Professor of Medical Biochemistry Cairo University, for his guidance and encouragement.

I would like to express my sincere gratitude and admiration to my professor Dr. Seham Bakry Assistant Professor Of Internal Medicine Cairo University who helped me sincerely to complete this work.

To my mother, father and grandmother for their enormous support and love; and to my wife Athar who is always inspiring.

Abstract

Acute kidney injury (AKI) is a major clinical problem with a rising incidence and high mortality rate.

Since creatinine detects injury after more than 50% of renal function be lost & serum creatinine does not accurately depict kidney function until a steady state has been reached.

So lipocalin present an early detector of kidney function & predict outcome of kidney state.

Our results showed statistically significant differences of mean lipocalin levels in the studied groups. From these results, it was concluded that serum & urinary lipocalin can be accepted as diagnostic predictors of the degree acute kidney injury as an ELISA test for the injury

Key words:

- Lipocalin.
- NGAL (Neutrophil Gelatinase Associated Lipocalin).
- · Acute renal failure.
- MDRD (modified diet in Renal Diseases).

Contents

•	List of Abbreviations I		
•	List of Tables		
•	List of FiguresV		
•	Introduction and Aim of work		
•	Review of Literature		
	Acute renal failure		
	 Human Neutrophil Gelatinase Associated Lipocalin 45 		
•	Subjects and Methods60		
•	Results		
•	Discussion83		
•	Conclusion94		
•	Summary95		
•	Recommendations97		
•	References		
•	Arabic summary 128		

List of abbreviations

γGT	Gamma Glutamyl Transferase.
μL	Micro Liter.
ACEIs	angiotensin-converting enzyme inhibitors
ACS	Acute coronary syndrome
ADQI	Acute Dialysis Quality Initiative
AKI	Acute kidney injury
AKP	Alkaline Phosphatase.
ANA	Anti Nuclear Antibodies.
ANCA	Anti–neutrophil cytoplasmic antibody
ANOVA	Analysis Of Variance.
Anti-GBM	Anti–glomerular basement membrane
ARBs	angiotensin receptor blockers
ARF	Acute renal failure
AUC	Area Under the Curve.
BPH	benign prostatic hypertrophy
BUN	blood urea nitrogen
С	Control.
C&G	Cockcroft-Gault equations
СРВ	Cardiopulmonary bypass
cvs	cardiovascular stroke
DIC	Disseminated intravascular coagulopathy
ELISA	Enzyme Linked Immuno- Sorbent Assay.
FE _{Na}	Fractional excretion of Na
GFR	Glomerular Filtration Rate.

GGT	Gamma Glutamyl Transferase.
HAV	Hepatitis A Virus.
HBsAg	Hepatitis B surface Antigen
HBV	Hepatitis B Virus.
HCV	Hepatitis C Virus.
HIV	Human Immunodeficiency Virus .
HTN	Hypertension
HUS	Hemolytic Uremic Syndrome
IFN	Interferon.
IgG	Immunoglobulin G.
IgM	Immunoglobulin M.
IL	Interleukin.
IV	Intra Venous.
IVU	Intravenous urography
JVP/CVP	Jugular venous pressure/Central venous pressure
KDa	Kilo Dalton.
MAG3 scan	Mercapto Acetyl Tri Glycine scan
MDRD	Modification of Diet in Renal Disease
mL	Milliliter.
mm	Millimeter.
NPV	Negative Predictive Value.
NSAIDs	Nonsteroidal Anti-Inflammatory Drugs
NSTEMI	Non ST segment Elevation Myocardial Infarction
PC	Prothrombin Concentration.
PCR	Polymerase Chain Reaction.
PLT	Platelets.

PMNL	Polymorph Nuclear Leucocyte.
PPV	Positive Predictive Value.
PT	Prothrombin Time.
RIFLE	Risk, Injury, Failure, Loss, End Stage Kidney Disease
ROC	Receiver Operator Characteristic.
SD	Standard Deviation.
SLE	Systemic Lupus Erythromatosis
SIRS	Systemic Inflammatory Response Syndrome
Std	Standard.
T. Bilirubin	Total Bilirubin
TTP	Thrombotic Thrombocytopenic purpura
U/L	Unit/Liter.
UO	Urine Output
US	United States.
WBCs	White Blood Cells.
WHO	World Health Organization.

List Of Tables

Table	Subject	Page
No.		No.
1	Drug nephrotoxins.	18
2	Common drugs that can cause Allergic Interstitial Nephritis.	19
3	Characteristics of survivors of ARF at hospital discharge.	22
4	Urinary Diagnostic Indices in Prerenal Azotemia and Acute	32
	Tubular Injury.	
5	Causes of Acute Renal Failure Based on Laboratory Findings	33
6	Causes of alterations in serum urea and creatinine	34
7	Indications for renal replacement therapy in patients with AKI	44
8	Comparison between the cases and controls as regard general	69
	data	
9	Distribution of the studied cases as regard etiology	69
10	Distribution of the studied cases as regard kidney functions	70
11	Distribution of the studied controls as regard kidney functions	71
12	Comparison between cases and controls as regard kidney	72
	functions	
13	Distribution of the studied cases as regard NGAL.	73
14	Distribution of the studied controls as regard NGAL.	73
15	Comparison between cases and controls as regard NGAL.	73
16	Correlation between serum NGAL versus other variables among	74
	the studied cases.	
17	Correlation between serum NGAL versus other variables among	77
	the studied controls.	
18	Correlation between urinary NGAL versus other variables among	78
	the studied cases	
19	Correlation between urinary NGAL versus other variables among	80
	the studied controls.	
20	Sensitivity, specificity, PPV and VPV and accuracy of urinary and	81
	serum NGAL in prediction of renal impairment (early predictors).	
21	Relation between Serum and urinary NGAL by multivariate	82
	analysis (linear regression test).	

List of Figures

Figure	Subject	Page
No.		
1	Normal anatomy of kidney ,ureters & urinary bladder	3
2	The RIFLE classification of ARF	5
3	Tubular-Cell Injury and Repair in Ischemic Acute Renal Failure	12
4	Survival, hospital mortality and 1-year mortality in patients admitted to the ICU with ARF.	21
5	Algorithm for the diagnosis and treatment of acute renal failure	23
6	Urinalysis in acute renal failure	27
7	Differential diagnosis of acute renal failure.	35
8	Diagram showing lipocalin protein	49
9	Distribution of the studied cases as regard etiology	70
10	Comparison between cases and controls as regard kidney functions.	72
11	Comparison between cases and controls as regard NGAL.	74
12	Correlation between SNGAL versus creatinine among cases.	75
13	Correlation between SNGAL versus GFR (MDRD).	75
14	Correlation between SNGAL versus urea.	76
15	Correlation between SNGAL versus GFR	76
16	Correlation between SNGAL and UNGAL.	77
17	Correlation between UNGAL versus creatinine among cases.	78
18	Correlation between UNGAL versus urea	٧٩
19	Correlation between UNGAL versus GFR (MDRD).	79
20	Correlation between UNGAL versus GFR (G&C).	80
21	SNGAL and UNGAL lines overlapped in ROC curve	81

Introduction:

Acute kidney injury (AKI) is a major clinical problem with a rising incidence and high mortality rate. (Uchino et al., 2006)

Acute renal injury (AKI) secondary to ischemic injury remains a common and potentially a risk in patient admitted to ICU. (Devarajan 2007)

Hospital-acquired ARF complicates up to 4% of hospital admissions, and as many as 20-40% of ICU admissions. The mortality of ARF has not changed appreciably in the past fifty years, holding steady at 50% (and as high as 70% in the ICU setting). (Devarajan 2007)

Early diagnosis of acute kidney injury (AKI) is often problematic, due to the lack of suitable early biomarkers of renal damage and kidney function.

Serum creatinine is an inadequate marker for AKI First, more than 50% of renal function must be lost before an elevation in serum creatinine is detected. Second, serum creatinine does not accurately depict kidney function until a steady state has been reached, which may require several days. (Kingshuk Das et al., 2005).

Wide interrogation strategy was used to identify renal genes that are induced very early after renal ischemia, whose protein products might serve as novel biomarkers for AKI. <u>Neutrophil Gelatinase-Associated Lipocalin</u>(**NGAL**) might represent an early, sensitive, non-invasive biomarker for acute renal injury and urinary NGAL might serve as an early marker for ischaemic renal injury.

Seven genes that are upregulated >10-fold were identified, one of which (*Cyr61*) has recently been reported to be induced after renal ischemia. (Jaya et al., 2007).

Unexpectedly, the induction of the other six transcripts was novel to the ARF field. (Han et al 2002).

The origin of NGAL from tubule cells was confirmed in cultured human proximal tubule cells subjected to ischemic injury.

Aim of work:

Identification of urinary and serum concentration of uNGAL in ICU patient.

We assessed the ability of uNGAL to predict AKI development and severity in critically ill patient.

Comparing value of uNGAL with serum creatinine & GFR in critically ill patient in ICU. (Nickolas et al., 2008).

So we evaluate the utility of uNGALto predict persistant AKI & progression of AKI to higher RIFLE. (Zappitelli et al., 2007).

Introduction:

Acute renal failure (ARF) or acute kidney injury (AKI), as it is now referred to in the literature, is defined as an abrupt or rapid decline in renal filtration function. This condition is usually marked by a rise in serum creatinine concentration or azotemia (a rise in blood urea nitrogen [BUN] concentration). However, immediately after a kidney injury, BUN or creatinine levels may be normal, and the only sign of a kidney injury may be decreased urine production. A rise in the creatinine level can result from medications (eg, cimetidine, trimethoprim) that inhibit the kidney's tubular secretion. A rise in the BUN level can occur without renal injury, such as in GI or mucosal bleeding, steroid use, or protein loading, so a careful inventory must be taken before determining if a kidney injury is present. (Bellomo et al., 2004).

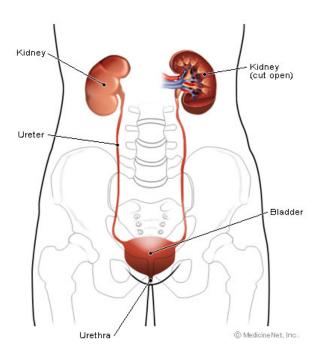


Figure 1: anatomy of kidney, ureters & urinary bladder

ACUTE RENAL FAILURE

Background

Until recently, a systematic definition of acute renal failure (ARF) was lacking, which led to significant confusion both clinically and in the medical literature. The Acute Dialysis Quality Initiative (ADQI) group published the RIFLE classification of ARF, based on changes from the patient's baseline either in serum creatinine level or glomerular filtration rate (GFR) or urine output (UO).

The RIFLE classification of ARF is as follows: (Bellomo et al., 2004).

- Risk (R) Increase in serum creatinine level 1.5 fold or decrease in glomerular filtration rate (GFR) by 25%, or urine output(UO) <0.5 mL/kg/h for 6 hours.
- Injury (I) Increase in serum creatinine level 2.0 folds or decrease in glomerular filtration rate (GFR) by 50%, or urine output(UO) <0.5 mL/kg/h for 12 hours.
- Failure (F) Increase in serum creatinine level 3.0 folds, decrease in glomerular filtration rate (GFR) by 75%, or serum creatinine level >4 mg/dL with acute increase of >0.5 mg/dL; urine output(UO) <0.3 mL/kg/h for 24 hours, or anuria for 12 hours.
- Loss (L) Persistent ARF, complete loss of kidney function
 >4 weeks.
- End-stage kidney disease (E) Loss of kidney function >3 months.

Since baseline serum creatinine level and GFRs may not be readily available the consensus committee recommends the use of the Modification of Diet in Renal Disease (MDRD) equation (Bagshaw et al., 2007) to estimate the patients GFR/1.73 mm based upon: serum creatinine level, age, gender, and race. The proportional decrease in GFR should be calculated from 75 mL/min per 1.73 mm (Uchino et al., 2005), the agreed upon lower limit of normal.

ARF is a common entity in the Emergency Department. Emergency physicians play a critical role in recognizing early ARF, preventing iatrogenic injury, and reversing the course of ARF. (Ostermann M et al., 2007).

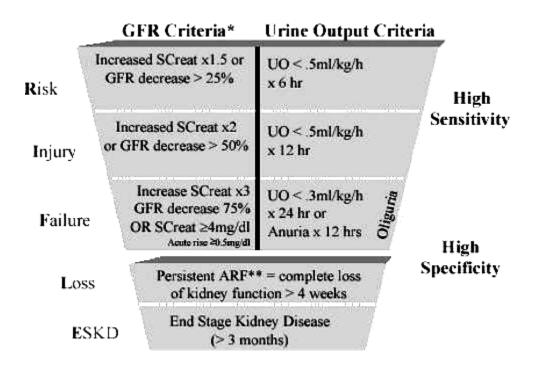


figure 2: The RIFLE classification of ARF is as follows: (Bellomo et al., 2004).