Detection of Aberrant Promoter Methylation of Retinoic Acid Receptor Gene (RAR) in the Urine of Bladder Cancer Patients

Thesis

Submitted for fulfillment of master degree In biochemistry

By

Ahmed Ibrahim Abdel Fattah Nossier

B.Sc. Pharmaceutical sciences, 2001, Ain Shams University

Faculty of Pharmacy
Cairo University
2010

Detection of Aberrant Promoter Methylation of Retinoic Acid Receptor Gene (RAR) in the Urine of Bladder Cancer Patients

Thesis

Submitted for fulfillment of master degree In biochemistry

By

Ahmed Ibrahim Abdel Fattah Nossier

B.Sc. Pharmaceutical sciences, 2001, Ain Shams University

Under supervision of

Prof.Dr. Mohamed Ahmed Hamdy

Professor of Biochemistry Faculty of Pharmacy Cairo University

Prof.Dr. Sanaa Eissa Mohamed

Professor of Medical Biochemistry
Faculty of Medicine
Ain Shams University

Prof.Dr. Ashraf Saad Zagloul

Professor of Surgical Oncology National Cancer Institute Cairo University

First and foremost thanks to **ALLAH**

I wish to express my deepest gratitude and sincere appreciation to *Prof. Dr. Mohamed Hamdy*, professor of Biochemistry, Faculty of Pharmacy, Cairo University, for his guidance, kind supervision, constant support and encouragement throughout the work.

Words fail to express my deepest appreciation to *Prof. Dr. Sanaa Eissa*, professor of Biochemistry, Faculty of Medicine, Ain Shams University, for her great help starting from suggesting the point, her creative and instructive ideas in planning, discussing and revising this work.

I wish to express my deepest gratitude to *Prof. Dr.Ashraf Zagloul*, professor of Surgical Oncology, National Cancer Insitute, Cairo University, for his ideal guidance and careful selection of the patients.

I wish to express my deepest gratitude to *DR*. *Inas el Kholy*, MD, Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, for her help, constant support and continuous assistance throughout the course of this study.

I wish to express my deepest appreciation to *DR. Hanan Hussin*, lecturer of Biochemistry, Faculty of Medicine, Ain Shams University, for her kind supervision, constant support and her help in revising this work.

I will never forget the kind supervision and encouragement provided with *my parents*. I am also very grateful to *my wife*, for her assistance, constant support and encouragement throughout the work.

This work was supported by the Academy of Research and Technology. Technology Development and Scientific Sector, Science and Technology Center, Project 21, Egypt.

Ahmed Ibrahim Abdel Fattah Nossier

List of contents

Page No.

List of Abbreviations	
List of Figures	VIII
List of Tables	XI
Introduction	1
Aim of Work	4
Review of Literature	4
Epidemiology of Bladder Cancer	5
Etiology and Risk factors	7
Bladder Cancer Staging	13
Grading of Bladder Cancer	17
Histopathological Types of Bladder Cancer	18
Diagnosis of Bladder Cancer	21
DNA Methylation	35
DNA Methylation and Gene Regulation	45
DNA Methylation and Cancer	49
DNA Methylation Analysis	62
Retinoids	65
Mechanism of Retinoid Receptors Action	73

Retinoic Acid and Cell Cycle Regulation	19
Loss of RAR- β ₂ Expression as a Biomarker in Solid Tumors	30
Molecular Mechanisms Responsible for loss of RAR-β ₂ Expression8	31
Molecular pathways involved in the mediation of tumor suppression by RAR- β_2	
Materials and Methods	85
Subjects	85
Sample Collection and Lab Investigations	37
Detection of Bilharzial Antibodies in Sera	90
Molecular analysis	.93
DNA Extraction from Urine Pellets	94
Bisulfite Conversion	.97
PCR Amplification of the RARβ ₂ Gene	01
Nested PCR Amplification of RARβ ₂ Gene1	05
Detection of PCR products by Agarose Gel Electrophoresis	109
Statistical Analysis	14
Results1	17
Discussion1	45
Summary and Conclusion1	60
References	71
Arabic Summary	

List of abbreviations

5-ALA 5-aminolevulinic acid

ABP 4-aminobiphenyl

AF Activation function domain

AJCC American Joint Committee on

Cancer

AP-1 Activating protein-1

APC Adenomatous polyposis coli gene

bp base pair

BPDE Benzo(a)pyrene diol epoxide

BRCA1 Breast cancer 1 gene

BTA Bard Tumor Antigen

CDKN2A Cyclin-dependent kinase 2A

CDKs Cyclin-dependent kinases

CFH Complement factor H

CFH-rp Complement factor H-related proteins

CIS Carcinoma in Situ

CKs Cytokeratins

COX-2 Cyclooxigenase-2

CpA Cytosine phosphodiester Adenine

CpG Cytosine phosphodiester Guanine

CpT Cytosine phosphodiester Thymine

CRABP Cytoplasmic retinoic acid binding protein

CRBP Cytoplasmic retinol binding protein

CYP1A2 Cytochrome p450 1A2

DAPK Death-associated protein kinase gene

DBD DNA-Binding Domain

DMH Differential methylation hybridization

DNA Deoxyribonucleic acid

DNMT DNA methyltransferase

DR Direct repeat

E-cad Epithelial cadherin gene

EDNRB Endothelin receptor B gene

EDTA Ethylene Diamine Tetra Acetic acid

EGFR Epidermal growth factor receptor

ELISA Enzyme Linked Immunosorbent Assay

Erk1/2 Extracellular signal-regulated protein

kinases 1 and 2

FDP Fibrinogen degradation products

FHIT Fragile histidine triad gene

FISH Fluorescent in situ hybridization

GSTM1 Glutathione S-transferase M1

GSTP1 Glutathione S-transferase $\Box 1$ gene

GTFs General transcription factors

HAase Hyalourindase

HAT Histone acetyltransferases

HDAC Histone deacetylases

HMT Histone methyltransferase

HPLC High performance liquid chromatography

HPV Human papilloma virus

IHA Indirect Haemagglutination Assay

ISUP International Society of Urological

Pathology

JNK Jun amino-terminal kinase

LBD Ligand-Binding Domain

LOH Loss of heterozygosity

Lys Lysine

M Distant metastasis

MAPK Mitogen-activated protein kinase

MBDs Methyl-binding domain proteins

MGMT O(6)-methylguanine-DNA

methyltransferase gene

MKK Mitogen-activated protein kinase kinase

MLH1 MutL homologue 1gene

MMP Matrix metalloproteinase

Ms-AP-PCR Methylation-sensitive arbitrarily primed

polymerase chain reaction

MSP Methylation-specific polymerase chain

reaction

MTA2 Metastasis-associated protein 2

MUMA Nuclear mitotic apparatus

N Regional lymph node metastasis

NAT2 N-acetyltransferase 2

NCI National Cancer Institute

NCoR Nuclear receptor corepressor

NMP22 Nuclear matrix protein22

NNCs N-nitroso compounds

NPV Negative predictive value

NSCLC Non-small cell lung cancer

p53 Tumor suppressor gene

PAX6 Paired box transcription factor 6 gene

PBS Phosphate buffer saline

PCNA Proliferating cell nuclear antigen

PCR Polymerase chain reaction

PI-3K Phosphoinositide-3 kinase

PPV Positive predictive value

RA Retinoic acid

RARs Retinoic acid receptors

RARβ Retinoic acid receptor β gene

RAREs Retinoic acid response elements

RASSF1a Ras association domain family 1A gene

Rb Retinoblastoma protein

RbAp46/48 Retinoblastoma-associated protein 46/48

RBCs Red Blood Cells

RLGS Restriction landmark genomic scanning

RNA Ribonucleic acid

RNA pol II RNA polymerase II

RRIG1 Retinoid receptor-induced gene-1

RT-PCR Reverse transcriptase polymerase chain

reaction

RXRs Retinoid X receptors

SAP18/30 Sin3-associated polypeptides 18/30

SCC Squamous Cell Carcinoma

SMCC Srb and Mediator protein containing

complex

SMRT Silencing mediator for retinoid and thyroid

hormone receptor

SPSS Statistical Package for the Social Sciences

T Size of primary tumors

T.B.E Trizma. Boric acid .EDTA

TCC Transitional Cell Carcinoma

TF Transcription factors

TGS Transcriptional gene silencing

TPA Tissue polypeptide antigen

UBC Urinary bladder cancer

VHL Von Hippel–Lindau gene

WBCs White Blood Cells

WHO World Health Organization

ZF Zinc-finger domain

List of Figures

Fig. No.	Page No.
Figure (1):	Diagram showing the T stages of bladder cancer
Figure (2):	DNA methylation reaction catalyzed by DNA methyltransferase39
Figure (3):	The DNA methyltransferases of mammals
Figure (4):	A family of methyl-CpG-binding proteins
Figure (5):	Mechanism of gene inactivation by DNA methylation
Figure (6):	Possible roles of increased CpG islands and decreased global DNA methylation in tumour development
Figure (7):	DNA methylation changes in cancer cells
Figure (8):	Naturally occurring retinoids66
Figure (9):	Functional domains and the major phosphorylation sites of nuclear retinoid receptors
Figure (10):	Retinoids response elements73

Figure (11):	Three-step mechanism of retinoid receptor action
Figure (12):	Positivity rate of Bilharziasis among different groups of study120
Figure (13):	Positivity rate of cytology in urine samples of different groups of study
Figure (14):	Positivity Rate of RARβ ₂ gene methylation among different groups of study
Figure (15):	MS-PCR product analysis of urinary RARβ ₂ gene by agarose gel electrophoresis in the normal group
Figure (16):	MS-PCR product analysis of urinary RARβ ₂ gene by agarose gel electrophoresis in the benign group
Figure (17):	MS-PCR product analysis of urinary RARβ ₂ gene by agarose gel electrophoresis in the malignant group
Figure (18):	Roc curve analysis for the PMA of RARβ ₂ gene in malignant group versus benign and normal control groups