HAZARD EVALUATION OF SOME NOVEL PESTICIDES AGAINST NON-TARGET ORGANISMS

MAHER ABDEL-ALEEM MOHAMED HAMAAD

B.Sc. Agric. Sc. (Pesticides), Ain Shams University, 2000M.Sc. Agric. Sc. (Pesticides), Ain Shams University, 2006

A thesis submitted in partial fulfillment

of the requirements for the degree of

in
Agricultural Science
(Pesticides)

Department of Plant Protection Faculty of Agriculture Ain Shams University

2011

تقييم مخاطر بعض المبيدات الجديدة تجاة كائنات حية غير مستهدفة

رسالة مقدمة من ماهر عبد العليم محمد حماد

بكالوريوس علوم زراعية (مبيدات) ، جامعة عين شمس، 2000 ماجستير علوم زراعية (مبيدات) ، جامعة عين شمس، 2006

للحصول على

درجة دكتور فلسفه في العلوم الزراعية (مبيدات آفات)

قسم وقاية النبات كلية الزراعة جامعة عين شمس

SUMMARY AND CONCLUSIONS

The problems and risks of intensive and misuse of pesticides need to offer a suitable system for hazard assessment of such chemicals under local conditions. Since these systems widely used now as a basic requirement for take the decisions regarding to prevent adverse effects against health and environment. So, the aim of the present study is to propose a hazard evaluation model which can be used as a tool for management handling and use of pesticides. To get the required data for establishing the model, serial of experiments were designed and carried out for two insecticides, i.e. chlorpyrifos as a chemical conventional insecticide and abamectin as a novel insecticide. The experiments included the following:

- Determination of toxicity data (LD50, LOEL and NOEL) against rats and test biochemical and histopathological effects of the two tested insecticides against rats.
- Assessment the phytotoxic effects of the two tested pesticides against *Vicia faba* .
- Genotoxicity assessment of the two tested insecticides against insect model (*Drosophilla sp*), mammalian model, (Experimental rats) and plant model (*allium cepa*).
- Toxicity measurement of the two tested insecticides against non-target organisms honey bees (Adult *Apis melifra*) and hymenopteran egg parasitoid (*Trichogramma sp*).
- Studying the environmental fate of the two tested insecticides on (plants leaves surfaces) and in (water and bacteria *Pseudomonas fluorescence* liquid media).

Approval Sheet

HAZARD EVALUATION OF SOME NOVEL PESTICIDES AGAINST NON-TARGET ORGANISMS

By

MAHER ABDEL-ALEEM MOHAMED HAMAAD

B.Sc. Agric. Sc. (Pesticides), Ain Shams University, 2000 M.Sc. Agric. Sc. (Pesticides), Ain Shams University, 2006

This thesis for Ph.D. degree has been approved by:

Dr.	Mohar	med Abd El	-had	y kandel	•••••	•••••		
	Prof.	Emeritus	of	Pesticide	Chemistry,	Department	of	Plant
	Protec	tion, Facult	ty of	Agricultur	e, Cairo Univ	ersity		
Dr.	Abd E	l-Fatah Ab	d El	- Kader awa	aad	•••••		
	Prof.	Emeritus of	f Ge	natics, Dep	artment of Go	enatics, Facult	yof	
	Agricu	ılture, Ain	Shar	ns Universi	ity			
Dr.	Mohar	med El- Saio	d Sal	eh El- Zem	aity	•••••		
	Prof.	Emeritus of	f Pes	ticide Chei	mistry and To	oxicology, Dep	artn	nent
	of Plan	nt Protectio	n, F	aculty of A	griculture, A	in Shams Uni	versi	ity
Dr.	Mohar	med Ibrahin	n Ab	del-Megeed	d	•••••		
	Prof.	Emeritus o	f Pe	sticide Che	emistry and T	Γoxicology, D	epar	tmen
	of Plai	nt Protectio	n, Fa	aculty of A	griculture, Ai	in Shams Univ	ersi	ty
			•	•				-

Date of Examination 29 / 9 / 20 11

HAZARD EVALUATION OF SOME NOVEL PESTICIDES AGAINST NON-TARGET ORGANISMS

By

MAHER ABDEL-ALEEM MOHAMED HAMAAD

B.Sc. Agric. Sc. (Pesticides), Ain Shams University, 2000 M.Sc. Agric. Sc. (Pesticides), Ain Shams University, 2006

Under the supervision of:

Dr. Mohamed Ibrahim Abdel-Megeed

Prof. Emeritus of Pesticide Chemistry and Toxicology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Mohamed El- Said Saleh El- Zemaity

Prof. Emeritus of Pesticide Chemistry and Toxicology, Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Ibrahim El-sayed Hussein

Prof. Pesticide Chemistry and Toxicology, Faculty of Agriculture, Ain Shams University.

CONTENTS

		Page
	LIST OF TABLES	VI
	LIST OF FIGURES	X
I-	INTRODUCTION	1
II-	REVIEW OF LITERATURE	7
1.	Toxicity of Chlororopyrifos and Abamectin	7
1.1	Chloropyrifos	7
1.2.	Abamectin	8
2.	Histopathological and Biochemical effects of	
	chloropyrifos and abamectin insecticides	10
3.	Phytotoxicity	13
3.1	Growth parameters	14
3.2	Plant constituents	14
4.	Genotoxicity	15
4.1	Mutegenicity	17
4.1.1.	Chloropyrifos	17
4.1.2.	Amamectin	19
4.2	Micronucleus assay	19
4.2.1	Chloropyrifos	20
4.2.2.	Abamectin	21
4.3	Plant (Onion) Cytology	21
5.	Impact of chloropyrifos and abamectin on non-target	23
5.1	Honey bees	23
5.2	Parasitoide (<i>Trichograma</i>)	24
5.2.	Chloropyrifos	24
5.2.2	Abamectin	26
6.	Environmental fate and behavior of chloropyrifos	28
6.1	Water and liquid cultures	29
6.2	Plant	32
7.	Risk assessment of chloropyrifos and bamectin	35

		Page
7.1	Risk assessment of chloropyrifos	36
7.2	Risk assessment of abamectin	46
III-	MATERIALS AND METHODS	48
1.	Experimental design	48
2.	Insecticides used	48
2.1.	Chloropyrifos	49
2.2.	Abamectin	50
3.	Toxicological studies	50
3.1.	Acute toxicity	51
3.2.	Sub-chronic toxicity	51
4.	Histopathological and biochemical effects of the tested	50
	insecticides against the treated animals	52
4.1.	Histopathological examination	52
4.2.	Biochemical analysis	52
5.	Phytotoxic effects	53
5.1	Germination	53
5.2.	Growth parameters	54
5.3.	Biochemical analysis of plant constituents	. 56
6.	Genetic studies	57
6.1.	Drosophila melanogaster	57
6.1.1	Drosophila stocks	57
6.1.2	Drosophila media and culture conditions	57
6.1.3	Chemicals and Reagents	58
6.1.4.	Aneuploidy and Chromosomal Aberrations in male	
	germ line test	58
6.1.5.	Determination of LC 50 on Drosophila	58
6.1.6.	Treatment of larvae	59
6.2.	Microneocleous tests	60
6.3.	Onion (Allium cepa) Cytological studies	61
6.3.1.	Acute test	62
6.3.2.	Root tips harvest and slide preparation (Mitosis)	62

		Page
6.3.3	Cytotoxicity determination	63
6.3.4.	Data analysis	63
7.	Impact of chloropyrifos and abamactin on non- target organisms	63
7.1.	Honey bees	63
7.2.	Parasitoide <i>Trichogramma</i> sp	65
7.2.1.	Initial toxicity test on adult (susceptible life stage)	65
7.2.2.	Parasitoide within host egg (less susceptible life stage)	66
7.2.3.	Adult exposures at intervals after treatment in green house (persistence)	67
8.	Environmental Studies	67
8.1.	Persistance and biodegradation in liquid culture and water	67
8.1.1.	Inhibition zones experiment	67
0.1.0	Enumeration of the pesticide utilizing Pseudomonas	
8.1.2.	flourocence bacterium in Mineral salt medium (MSM)	68
8.1.3.	Layout of water experiment	69
8.2.	Degradation behaviour	70
8.2.1.	Layout of vicia faba plant experiment	70
8.3.	Residue analysis	70
8.3.1.	Chlorpyrifos	70
8.3.1.1	Extraction procedures	70
8.3.1.2	Clean-up procedures.	71
8.3.1.3	Determination procedures	72
8.3.2.	Abamectin	73
8.3.2.1	Extraction and clean-up procedures	73
8.4.	Determination	73
9.	Risk assessment of the two tested insecticides	73
IV-	RESULTS AND DISCUSSION	75
1.	Acute and sub-chronic toxicological values of	75
	chloropyrifos and abamectin on rat Sprague Dawlly	13

		Page
2.	Histopathological effects	78
3.	Biochemical effects	86
3.1.	AChE activity (inhibition)	86
3. 2	Effect on liver function parameters	86
3.3.	Effect on Kidney function parameters	87
4.	Phytotoxicity	88
4.1.	Growth parameters	88
4.1.1	Acute toxicity EC ₅₀ and LOEL determination	88
4.1.2.	Effect of pesticides on vegetative characteristics	90
4.1.3.	Effect of pesticides on fruit characteristics	95
4.2.	Plant constituents	97
5.	Genotoxicity	99
5.1.	Mutegenicity	99
5.1.1.	Drosophila assay	99
5.1.1.1.	Toxicity Testes	99
5.1.1.2.	Germ-line Aneuploidy and Chromosomal Aberrations	
	Tests	101
5.1.1.2.a.	Germ-line Aneuploidy and Chromosomal Aberrations	
	Induced by Colchicine	102
5.1.1.2.b.	Germ-line Aneuploidy and Chromosomal Aberrations	
	Induced abamectin or chloropyrophos	102
5.2.	Micronucleus assay	113
5.3.	Plant (Onion) cytology	117
5.3.1.	Cytotoxicity and genotoxicity of the pesticides	117
5.3.2.	Mutagenicity of the pesticides	121
6.	Impact on non-target organisms	132
6.1.	Hony bees	132
6.1. a	Acute toxicity testes	132
6.1. b	Chronic toxicity testes	135

		Page
6.1. c.	Hazard assessment of the tested pesticides against	
	honey bees	136
6.2.	Parasitoide (Trichogramma sp.)	138
6.2.a.	LC50 determination	138
6.2.b.	Hazard assessment of the tested compound against	
	Trichogramma sp	139
6.2.c.	Card eggs testes	150
7.	Environmental Fate and behavior	152
7.1.	IC50 determination of abamectin and chloropyrophos	
	against Psedumonas sp. by acute toxicity zone	
	experiment	152
7.2.	Degradation and Biodegradation of abamectin and	
	chloropyrifos tap water in and liquid culture of	
	Pseudomonas sp bacteria	155
7.3.	Levels of abamectin and chloropyrifos residues on	1.00
	Vicia faba leaves	162
7.4.	Degradation behaviour of abamectin and chloropyrifos	1.60
	levels on Vicia faba leaves	163
7.5.	Hazard assessment of the tested compound against	
	non-target bioagent bacteria pseudomonas sp.and the	
	plant (Vicia faba) seeds	169
8.	Suggested model for risk assessment of chlorpyrifos	
	and abamectin	171
V-	SUMMARY AND CONCLUSIONS	178
VI-	REFERENCES	182
VII-	ARABIC SUMMARY	215

LIST OF TABLES

		Page
Table (1)	Toxicity parameters of abamectin and chloropyrophos	
	against rat Sprague Dawlly	76
Table (2)	Relationship between LD ₅₀ , LD50/1-90, LOEL, Hazard	
	Index and RQ (risk quotient) for selected pesticides	
	against rat Sprague Dawlly	78
Table (3)	The severity of the pesticides reaction in different tissues	70
	according to the histopathological alternations	79
Table (4)	Activity of AchE, Creatinine, GOTand GPT in rats	
	exposed to LD50/1day of abamectin and chloropyrifos	87
Table (5)	Activity of AchE, Creatinine, GOTand GPT in rats	
	exposed to LD50/1-90 day of abamectin and chloropyrifos	87
Table (6)	Toxicity parameters of chloropyrifos against Vicia faba	
	seeds	88
Table (7)	Effect of foliar application of different concentration from	
	abamectin and chlorpyrifos on vegetative growth of Vicia	
	faba bean plant in the 2010 season	91
Table (8)	Effect of foliar application of different concentration from	
	abamectin and chlorpyrifos on fruit characteristics of	
	Vicia faba bean plant in the 2010 season	95
Table (9)	Effect of foliar application of different concentration from	
	abamectin and chlorpyrifos on chemical analyses of Vicia	
	faba bean plant in the 2010 season	96
Table (10)	Toxicity parameters of abamectin and chloropyrifos	
	against Drosophila sp	100
Table (11)	Relationship between LD50, LOEL, Hazard Index and	
	RQ (risk quotient) for selected pesticides	100
Table (12)	Frequencies of anueploidy and structural chromosomal	
	aberration induced in Drosophila male germ line cells of	
	ATE strain after treatment with abamectin using larval feeding	101

Table (13)	Frequencies of anueploidy and structural chromosomal
	aberration induced in Drosophila male germ line cells of
	ATE strain after treatment with chlorpyrifos using larval
	feeding.
Table (14)	Acute Genotoxicity Effect of chlorpyrifos and abamectin
	different doses on <i>Sprague Dawlly</i> rat bone marrow cells.
Table (15)	Sub-chronic Genotoxicity Effect of chlorpyrifos and
	abamectin different doses on Sprague Dawlly rat bone
	marrow cells
Table (16)	Cytotoxicity effect of chloropyrifos and abamectin
	different concentrations to onion root tip cells.
Table (17)	Mutagenic potencies of the pesticides to onion root tip cells
Table (18)	Frequency of binucleated and micronucleated cells in the
	root meristem cells of Allium cepa exposed to
	chloropyrifos and abamectin
Table (19)	Mutagenic potencies of the pesticides to onion root tip
	cells analysis
Table (20)	Toxicity parameters of abamectin and chloropyrfos
	against honeybees
Table (21)	Chronic toxicity of abamectin against honey bees
Table (22)	Chronic toxicity of Chlorpyrifos against honey bees
Table (23)	Relationship between LC ₅₀ , LD ₅₀ , LOEL, Hazard Index
	and RQ (risk quotient) for selected pesticides against
	honey bees
Table (24)	Toxicity parameters of abamectin and chloropyriphos
	against <i>Tricogramma</i> sp
Table (25)	Hazard assessment of the tested compound against
	Tricogramma sp. Relationship between LD50, LOEL
	Hazard Index and RQ (risk quotient) for selected pesticides
Table (26)	% parasitism by <i>Trichogramma</i> in six treatments separate
, ,	after 1day, dry film

VIII

Table (27)	Total parasitism by <i>Trichogramma</i> in six treatments	
	separate during the experiment. dry film	
Table (28)	% emergence of <i>Trichogramma</i> adults in six treatments	
	separate after 1, 3 and 5 days, dry film	
Table (29)	LSD test for interaction between parasitism and days on	
	vine leaves	
Table (30)	Analysis of variance (ANOVA) for differences of	
	parasitism levels by Trichogramma between six	
	treatments and 3 days	
Table (31)	% parasitism by <i>Trichogramma</i> in six treatments separate	
	after 3, 7 and 15 days, vine	
Table (32)	Total number of parasitized eggs by <i>Trichogramma</i> in six	
	treatments separate during the experiment, vine	
Table (33)	% emergence of <i>Trichogramma</i> adults in six treatments	
	separate after 3, 7 and 15 days, vine	
Table (34)	LSD test for interaction between parasitism and daysVine.	
Table (35)	Analysis of variance (ANOVA) for differences of	
	parasitism levels by Trichogramma between six	
	treatments and 3 days	
Table (36)	% emergence of <i>Trichogramma</i> adults in six treatments	
	separate after 1, 3 and 5 days card egg	
Table (37)	Analysis of variance (ANOVA) for differences of	
	parasitism levels by Trichogramma between six	
	treatments and 3 days	
Table (38)	Abamectin and chloropyrifos on the growth of bacteria	
	Psedumonas on Nutrient agar (NA) medium after	
	incubation <i>Psedumonas</i> sp for 3 days	
Table (39)	Toxicity paramaters of abamectin and chloropyrophos	
	against Psedumonas sp	
Table (40)	Persistence, degradation and biodegradation of abamectin	
	and chloropyrifos in water and liquid culture Psedumonas	
	sp (bacteria10 ⁶ cfu)	

Table (41)	Statistical and mathematical analysis of the of abamectin	
	and chloropyrifos residues by Pseudomonas sp and tap	
	water	158
Table (42)	Initial deposits of abamectin and chloropyrifos and	
	percentages of dissipation on viciafaba leaves	163
Table (43)	Statistical and mathematical analysis of the of abamectin	
	and chloropyrifos residues on vicia faba leaves under	
	green house conditions	169
Table (44)	Relationship between IC_{50} , LOEL, Hazard Index and RQ	
	(risk quotient) for selected pesticides against non-target	
	bioagent bacteria pseudomonas sp	170
Table (45)	Relationship between EC ₅₀ , LOEL, Hazard Index and RQ	
	(risk quotient) for selected pesticides against non-target	
	plant (vicia faba) seeds	171
Table (46)	Determination of Hazard Index (HI) or Risk Quation (RQ)	174
Table (47)	Determination of Chronic RQ Index	174
Table (48)	Determination of Chronic Index	175
Table (49)	Determination of DT 50 Index	175
Table (50)	Determination of inter selectivity Co-efficient	176
Table (51)	Determination of intera selectivity Co-efficient	176
Table (52)	Determination of Score system Index (SsI)	177

LIST OF FIGURES

		Page
Fig (1)	The log-dose probit toxicity line of abamectin after	
	treatment of rat Sprague Dawlly to determine LD50	
	and LOEL	76
Fig (2)	The log-dose probit toxicity line of chloropyrifos	
	after treatment ofrat Sprague Dawlly to determine	
	LD50 and LOEL	76
Fig (3)): log-dose probit toxicity line of abamectin after	
	treatment of rat Sprague Dawlly LD50/1-90day	
	determination	77
Fig (4)	log-dose probit toxicity line of Chloropyrifos after	
	treatment of rat Sprague Dawlly LD50/1-90day	
	determination	77
Fig (5)	Histopathological effects in acute and Sub-chronic	
	abamectin against rat Sprague Dawlly liver, kidney	
	brain and testes determination	84
Fig (6)	Histopathological effects in acute and Sub-chronic	
	chloropyrophos against rat Sprague Dawlly liver,	
	kidney brain and testes determination	85
Fig (7)	The log-dose probit toxicity line of chloropyrifos	
	EC50 and LOEL of mortality % after treatment 24h	
	against Vicia faba seed germination	89
Fig (8)	The log-dose probit toxicity line of abamectin EC50	
	and LOEL of mortality % after 24h against Vicia	
	faba seed germination	89
Fig (9)	Yellow Leaf plant phytotoxicity	92
Fig (10)	Leaf necrosis phytotoxicity	92
Fig (11)	Leaf area (cm2)	92
Fig (12)	Shoot length (cm)	93
Fig (13)	Shoot fresh weight (g)	93