

PREPARATION AND CHARACTERIZATION OF SOME ANTIBACTERIAL GLASSES

A Thesis

Submitted in Partial Fulfillment of the Requirements
For
The degree of

Master of Science (M.Sc.) Chemistry

By

AHMED MOHAMED AHMED EL-FIQI

B.Sc. of Chemistry (2002)
Cairo University

Submitted to
Chemistry Department
Faculty of Science
Cairo University

جامعة القاهرة كلية العلوم

تحضير وتوصيف بعض أنواع من الزجاج المضاد للبكتيريا

رسالة مقدمة

كجزء متمم للحصول على درجة ماجستير العلوم في الكيمياء

من

أحمد محمد أحمد الفقى

بكالوريوس العلوم في الكيمياء

7..7

جامعة القاهرة

مقدمة الى قسم الكيمياء - كلية العلوم جامعة القاهرة

۱٤٣٠ هـ ۲۰۰۹م

ABSTRACT

Name : Ahmed Mohamed Ahmed El-Fiqi.

<u>Title of thesis:</u> "Preparation and Characterization of Some Antibacterial glasses"

<u>Degree</u> : M.Sc. Thesis (Chemistry), Faculty of Science, Cairo University, 2009.

Abstract

This work was carried out to investigate the antibacterial effects of some undoped and silver-doped P₂O₅ - CaO - Na₂O glasses against S.aureus, P.aeruginosa and E.coli microorganisms using agar disk-diffusion assays. Glass forming regions in the ternary P₂O₅ - CaO -Na₂O and in the quaternary P₂O₅ - CaO - Na₂O - Ag₂O systems were determined. Density, molar volume, dissolution of glass in water, pH changes of water during glass dissolution, and concentrations of silver ions released from silver-doped glasses into water during their dissolution were determined. The structures of some glasses were studied by XRD, FT-IR, and UV-VIS spectroscopy. The tested silver-free and silver-doped glasses demonstrated different antibacterial effects against the tested micro-organisms. For silver-free glasses, an increase in inhibition zone diameter (zone of no bacterial growth) was seen with the increase in the glass dissolution rate and with the decrease in water pH. Silver-doped glasses showed an increase in inhibition zone diameter with increasing Ag₂O content. An increase in concentrations of silver ions released from silver-doped glasses into water was seen with increasing time of glass dissolution and with increasing Ag₂O content. The dissolution rates of P₂O₅ - CaO - Na₂O glasses decreased with increasing CaO content and slightly decreased with gradual replacement of Na₂O by Ag₂O.

Keywords: Antibacterial glasses; Silver-doped phosphate-based glasses; Glass dissolution; Controlled release; Silver ions; Antibacterial effect.

Supervisors:

Dr. Mohamed Saber Morsi

Prof. Dr. Ahmed Abdelrahman Ahmed

Signature:

Signature:

Chemistry Department, Faculty of science - Cairo University. Glass Research Department, National Research Centre.

Prof. Dr. Mohamed Mohamed Shoukry

Signature:

Chairman of Chemistry Department, Faculty of Science - Cairo University

مستخلص

الاسم: أحمد محمد أحمد الفقى.

عنوان الرسالة: " تحضير و توصيف بعض أنواع من الزجاج المضاد للبكتيريا "

الدرجة: ماجستير العلوم في الكيمياء.

ملخص البحث:

تختص هذه الرسالة بدراسة التأثير المضاد للبكتيريا لبعض التراكيب الزجاجية في النظام - P2O5 - CaO - Na2O Ag₂O و المحتوية على ٠ و ٥ . • و ١ و ٢ مول % من Ag₂O وذلك على بعض أنواع من البكتيريا مثل S.aureus و P.aeruginosa و E.coli با ستخدام طريقة (Agar disk-diffusion). وقد تم تحضير العديد من التراكيب الزجاجية في النظام الثلاثي P2O5 - CaO - Na2O - Ag2O و في النظام الرباعي P2O5 - CaO - Na2O - Ag2O باستخدام طريقة الصهر التقليدية وذلك بهدف تحديد مدى التراكيب الكيميائية في هذه الأنظمة والتي تعطى عند صهرها زجاجا. تمت دراسة بعض الخواص مثل الكثافة و الحجم المولاري و ذوبان الزجاج في الماء و تغير الرقم الهيدروجيني للماء أثناء ذوبان الزجاج بالإضافة الى تقدير تركيزات أيونات الفضة الذائبة في المحاليل المائية. كما تم دراسة التركيب البنائي لبعض التراكيب الزجاجية وذلك باستخدام حيود الأشعة السينية و إمتصاص الأشعة تحت الحمراء و الأشعة المرئية و فوق البنفسجية. وقد بينت نتائج إختبارات المزارع البكتيرية أن جميع التراكيب الزجاجية المختبرة (المحتوية و غير المحتوية علىAg2O) لها تأثيرات مضادة للبكتيريا وذلك بدرجات متفاوتة تبعا لنوع البكتيريا (S.aureus > P.aeruginosa > E.coli) و تركيب الزجاج و تركيز Ag₂O به. و قد لوحظ أن التأثير المضاد للبكتيريا للتراكيب الزجاجية غير المحتوية على Ag₂O يزيد مع زيادة معدل ذوبان الزجاج وأيضا مع زيادة النقص في الرقم الهيدروجيني. وبالنسبة للتراكيب الزجاجية المحتوية على Ag2O فقد لوحظ زيادة التأثير المضاد للبكتيريا بزيادة تركيز Ag2O في الزجاج. كما تبين من دراسة ذوبان الزجاج في الماء أن معدل الذوبان للتراكيب الزجاجية في النظام الثلاثي P2O5 - CaO - Na2O يقل بزيادة تركيز CaO و أيضا يقل معدل الذوبان للتراكيب الزجاجية في النظام الرباعي P_2O_5 - CaO - Na_2O - Ag_2O وقد أوضحت قياسات الإمتصاص الذرى المحاليل الذوبان أن تركيز أيونات الفضة في المحلول يزيد بزيادة كلا من وقت ذوبان الزجاج وتركيز Ag2O في الزجاج. كما بينت دراسة إمتصاص أطياف الأشعة المرئية و فوق البنفسجية ظهور قمة إمتصاص عند طول موجي ٢٣٠ نانو متر تقريبا و التي تبين أنها ناتجة عن الإنتقالات الإلكترونية $4d^9 5s^1 - 4d^{10}$ لأيونات الفضة.

الكلمات الدالة: الزجاج المضاد للبكتيريا ؛ زجاج فوسفات الفضة ؛ أيونات الفضة ؛ التأثير المضادة للبكتيريا ؛ ذوبان الزجاج.

المشرفون: د./محمد صابر مرسى

قسم الكيمياء- كلية العلوم- جامعة القاهرة

التوقيع :

أ.د/ أحمد عبد الرحمن أحمد

قسم بحوث الزجاج - المركز القومي للبحوث

التوقيع :

يعتمد /

أ.د/ محمد محمد شكرى

التوقيع :

رئيس مجلس قسم الكيمياء كلية العلوم – جامعة القاهرة

Acknowledgements

I would like to express my sincere gratitude to Dr. Mohamed S. Morsi, Associate Professor, Chemistry Department, Faculty of Science, Cairo University for his interest, valuable support and continuous encouragement throughout this work.

I am fully indebted to Prof. Dr. Ahmed A. Ahmed, Professor of Chemistry and Technology of Glass, Glass Research Department, National Research Center (NRC) for proposing the topic of this work and his kind supervision, kind attitude, fruitful discussions and valuable help throughout all stages of this work. Dr. Ahmed is also thanked for his endless patience and help in reviewing this thesis.

I would like to thank Dr. Ali A. Ali, Researcher, Glass Research Dept., NRC, for his friendly attitude, support, and valuable help throughout this work, Dr. Ali is further thanked for his help in the analysis and writing of the data reported in this work.

The author would like to express his deepest thanks to Dr. Doaa H. Abdelrahman, Associate Prof., Natural and Microbial Products Dept, NRC, for her kind supervision on conducting the antibacterial activity tests reported in this work and further thanked for her interest, and support in writing this section.

My full thanks also go to Prof. Dr. Esmat M. Hamzawy, Professor of Applied Mineralogy and Head of Glass Research Dept., NRC and Dr. Mohamed R. El-Tohamy, Researcher, Glass Research Dept., NRC, for their endless encouragement and valuable support during this work.

Finally, I gratefully acknowledge any advice or help given from my colleagues at Glass Research Dept., NRC.

Table of contents

	Page
Abstract	
Acknowledgements	•
Table of contents	i
List of Signature	iii
List of figures List of tables	vi xiv
List of tables	XIV
Chapter 1: Introduction and Aim of the work	
	1
1.1 Introduction	2
1.1.1 Antibacterial materials	3
1.1.2 Inorganic antibacterial materials	3 5
1.1.3 Antibacterial activity of Ag ⁺ ions 1.1.4 Glass	6
1.1.4 Glass 1.1.4.1 Phosphate-based glasses (PBGs)	7
1.1.4.1 Thosphate-based glasses (TBGs) 1.1.4.2 Controlled release glasses (CRGs)	7
1.1.4.3 Structure of phosphate-based glasses	9
1.1.4.4 Ultra-phosphate glasses	10
1.1.4.5 Meta and poly-phosphate glasses	11
1.1.5 Antibacterial glasses	14
1.1.5.1 Phosphate-based glasses for the delivery of antibacterial ions	15
1.2 Aim and scope of the work	16
Chapter 2: Literature Review	
2.1 Phosphate-based glasses in the ternary system P ₂ O ₅ - CaO - Na ₂ O	18
2.2 Antibacterial phosphate-based glasses	30
Chapter 3: Experimental Techniques	
3.1 Types of glasses prepared in this work	42
3.2 Starting materials and glass preparation	45
3.2.1 Batch preparation	45
3.2.2 Melting batch and glass annealing	45
3.3 Glass characterization:	46
3.3.1 Visual investigations	46
3.3.2 XRD measurements	46
3.3.3 FT-IR absorption measurements	46
3.3.4 UV-VIS absorption measurements	47
3.3.5 Physical properties	47
3.3.6 Glass dissolution test.	55 56
3.3.6.1 pH measurements 3.3.6.2 FAAS measurements of silver ions released into water	56
3.3.7 Antibacterial activity tests (Agar disk-diffusion assays)	59
2.2 I III Dad to I at a to	

	Page
<u>Chapter 4</u> : Results	
4.1 Glass-forming region (GFR):	63
4.1.1 GFR in the ternary P_2O_5 - CaO - Na ₂ O	63
$4.1.2 \text{ GFR}$ in the quaternary P_2O_5 - CaO - Na_2O - Ag_2O	63
4.2 Density and molar volume:	67
4.2.1 Density and molar volume of P ₂ O ₅ - CaO - Na ₂ O glasses	67
4.2.2 Density and molar volume of P ₂ O ₅ - CaO - Na ₂ O - Ag ₂ O glasses	68
4.3 Glass dissolution:	79
4.3.1 Dissolution of P ₂ O ₅ - CaO - Na ₂ O glasses	79
4.3.2 Dissolution of P ₂ O ₅ - CaO - Na ₂ O - Ag ₂ O glasses	80
4.3.3 pH measurements	93
4.3.4 Silver ions release profiles	99
4.4 Visual examination:	104
4.4.1 P2O5 - CaO - Na2O glasses	104
4.4.2 P2O5 - CaO - Na2O - Ag2O glasses	104
4.5 XRD patterns of some silver-doped glasses	104
4.6 FT-IR absorption spectra	106
4.7 UV-VIS absorption spectra	112
4.8 Antibacterial activity (Agar-disk diffusion assays)	116
<u>Chapter 5</u> : Discussion	
5.1 Glass formation:	124
5.1.1 Glass formation in the ternary system P ₂ O ₅ - CaO - Na ₂ O	124
5.1.2 Glass formation in the quaternary system P ₂ O ₅ - CaO - Na ₂ O - Ag ₂ O	127
5.2 Density and molar volume:	129
5.2.1 Density and molar volume of P ₂ O ₅ - CaO - Na ₂ O glasses	129
5.2.2 Density and molar volume of P ₂ O ₅ - CaO - Na ₂ O - Ag ₂ O glasses	131
5.3 Glass dissolution:	131
5.3.1 Dissolution of P ₂ O ₅ - CaO - Na ₂ O glasses	134
5.3.2 Dissolution of P ₂ O ₅ - CaO - Na ₂ O - Ag ₂ O glasses	138
5.3.3 pH changes:	138
5.3.3.1 pH changes during dissolution of P ₂ O ₅ - CaO - Na ₂ O glasses	140
5.3.3.2 pH changes during dissolution of P ₂ O ₅ - CaO - Na ₂ O - Ag ₂ O glasses	141
5.3.4 Silver ions release	141
5.4 XRD analysis	142
5.5 FT-IR analysis	142
5.6 UV-VIS spectra	147
5.7 Antibacterial activity	151
5.7.1 Antibacterial activity of silver free glasses	152
5.7.2 Antibacterial activity of silver-doped glasses	154
Chapter 6: Summary and Conclusions	157
References	162
Arabic summary	

List of symbols and abbreviations

W.H.O World Health Organization.

DNA Deoxyribonucleic Acid.

G + Gram-positive.

G - Gram-negative.

E.coli Escherichia coli.

P.aeruginosa Pseudomonas aeruginosa.

S.aureus Staphylococcus aureus.

MRSA Methicillin-Resistant Staphylococcus Aureus.

C. albicans Candida albicans.

ppm Part per million.

ppb Part per billion.

NASA National Aeronautic Space Administration.

ASTM American Society for Testing Materials.

PBGs Phosphate-Based Glasses.

CRGs Controlled Release Glasses.

 \mathbf{Q}^n PO₄ group with n = number of bridging oxygen atoms.

BO Bridging oxygen.

NBO Non-bridging oxygen.

NMR Nuclear Magnetic Resonance.

 T_{g} Glass transition temperature.

XRD X - Ray Diffraction.

FT-IR Fourier - Transform Infrared spectroscopy.

UV-VIS Ultraviolet - Visible spectroscopy.

Symbols and abbreviations

ICP-OES Inductively Coupled Plasma - Optical Emission Spectroscopy.

SBF Simulated Body Fluid.

SEM Scanning Electron Microscopy.

XPS X-ray Photoelectron Spectroscopy.

ESEM Environmental Scanning Electron Microscopy.

HBSS Hank's Buffered Saline Solution.

PGFs Phosphate-based glass fibres.

SHMP Sodium Hexa-Metaphosphate (50Na₂O - 50P₂O₅).

EDX Energy Dispersive X-ray.

MAS -NMR Magic Angle Spinning - Nuclear Magnetic Resonance.

XANES X-ray Absorption Near Edge Structure.

HEXRD High Energy X - Ray Diffraction.

CFUs Colony-Forming Units.

CDFF Constant depth film fermenter.

2D-NMR Two-dimensional NMR.

TEM Transmission Electron Microscopy.

C.difficile Clostridium difficile.

FAAS Flame Atomic Absorption Spectrometry.

Mass of glass sample in air.

M_L Mass of glass sample in liquid.

DIN Deutsches Institut für Normung (The German Institute for

Standardization)

ISO International Standards Organization.

MIC Minimum Inhibitory Concentration.

ATCC American type culture collection.

Symbols and abbreviations

GFR Glass-Forming Region.

 $\mathbf{D}_{\cdot \mathbf{R}}$ Dissolution Rate.

a.u. arbitrary units.

IZD Inhibition Zone Diameter.

T_m Melting temperature.

CLD Cross-Link Density.

δ Bending vibration mode.

 v_s Symmetric stretching vibration mode.

 v_{as} Asymmetric stretching vibration mode.

ATP Adenosine Tri-Phosphate.

RNA Ribonucleic Acid

NADH Nicotinamide Adenine Dinucleotide Hydrogenase.

APROVAL SHEET FOR SUBMISSION

Title of the M.Sc. Thesis:

"Preparation and Characterization of Some Antibacterial Glasses"

Name of the candidate: Ahmed Mohamed Ahmed El-Fiqi

This M.Sc. Thesis has been approved for submission by the supervisors:

Dr. Mohamed Saber Morsi	Prof. Dr. Ahmed Abdelrahman Ahmed
Signature:	Signature:
Associate Professor of Physical Chemistry,	Professor of Chemistry and Technology of Glass,
Chemistry Department, Faculty of Science,	Glass Research Department,
Cairo University	National Research Centre

Prof. Dr. Mohamed Mohamed Shoukry

Signature:

Chairman of Chemistry Department,
Faculty of Science,
Cairo University

List of Figures

List of Figures

Fig. No	g. No.		
Fig.1:	Schematic two-dimensional illustration of the atomic arrangement		
	in (a) crystalline silica and (b) glassy silica.	8	
Fig.2:	PO ₄ tetrahedral units that can exist in phosphate-based glasses.	13	
Fig.3:	Schematic illustration of metaphosphate glass structure.	13	
Fig.4:	Schematic illustration of ultraphosphate glass structure.	13	
Fig.5:	Composition diagram of the ternary system P ₂ O ₅ - CaO - Na ₂ O.	43	
Fig.6:	Composition diagram of the quaternary system P_2O_5 - CaO - Na_2O - Ag_2O .	44	
Fig.7:	Front view of Petri dish (a): before incubation, (b): after incubation		
	(c): Side view of the Petri dish after incubation.	60	
Fig.8:	Ternary phase diagram showing the GFR and the glass-forming compositions		
	in the P ₂ O ₅ - CaO - Na ₂ O system.	64	
Fig.9:	Ternary phase diagram showing the GFR and the glass-forming compositions		
	in the P ₂ O ₅ - CaO - Na ₂ O - 0.5 Ag ₂ O system.	65	
Fig.10:	Ternary phase diagram showing the GFR and the glass-forming compositions		
	in the P ₂ O ₅ - CaO - Na ₂ O - 1 Ag ₂ O system.	65	
Fig.11:	Ternary phase diagram showing the GFR and the glass-forming compositions		
	in the P ₂ O ₅ - CaO - Na ₂ O - 2 Ag ₂ O system.	66	
Fig.12:	Effect of replacement of Na ₂ O by CaO on the density of P ₂ O ₅ - CaO - Na ₂ O		
	glasses.	74	
Fig.13:	Effect of replacement of Na_2O by CaO on the molar volume of P_2O_5 - CaO		
	- Na ₂ O glasses.	74	
Fig.14:	Effect of replacement of CaO by P_2O_5 on the density of P_2O_5 - CaO - Na ₂ O		
	glasses.	75	
Fig.15:	Effect of replacement of CaO by P_2O_5 on the molar volume of P_2O_5 - CaO		
	- Na ₂ O glasses.	75	
Fig.16:	Effect of replacement of P_2O_5 by Na_2O on the density of P_2O_5 - CaO - Na_2O		
	glasses.	76	

List of Figures

Fig. No	•		Page
Fig.17:	Effect of	replacement of P ₂ O ₅ by Na ₂ O on the molar volume of P ₂ O ₅ - CaO	
	- Na ₂ O gl	asses.	76
Fig.18:	(a) and (b) Effects of replacement of Na ₂ O by Ag ₂ O (G ₃ and G ₅) on the	
	density a	nd molar volume of 70 P ₂ O ₅ -CaO-Na ₂ O glasses, and replacement	
	of P ₂ O ₅ b	y Ag ₂ O (G ₇) on the density and molar volume of 70 P ₂ O ₅ -CaO	
	glasses, re	espectively.	77
Fig.19:	(a) and (b) Effects of replacement of Na ₂ O by Ag ₂ O on the density and molar	
	volume o	f 65 P ₂ O ₅ -CaO-Na ₂ O glasses, respectively.	77
Fig.20:	Effect of	replacement of Na ₂ O by Ag ₂ O on the density of 60 P ₂ O ₅ - CaO	
	- Na ₂ O gl	asses.	78
Fig.21:	Effect of	replacement of Na ₂ O by Ag ₂ O on the molar volume of 60 P ₂ O ₅ - Cat	O
	- Na ₂ O gl	asses.	78
Fig.22:	Weight lo	oss as a function of time in the dissolution of 40 P ₂ O ₅ - CaO - Na ₂ O	
	glasses in	distilled water at 37°C.	85
Fig.23 aı	nd Fig.24:	Weight loss as a function of time in the dissolution of 45 P ₂ O ₅ - Ca	O
		- Na ₂ O glasses in distilled water at 37°C.	85-86
Fig.25 aı	nd Fig.26:	Weight loss as a function of time in the dissolution of 50 P ₂ O ₅ -	
		CaO - Na ₂ O glasses in distilled water at 37°C.	86-87
Fig.27 aı	nd Fig.28:	Weight loss as a function of time in the dissolution of 55 P_2O_5 -	
		CaO - Na ₂ O glasses in distilled water at 37°C.	87-88
Fig.29:	Weight lo	oss as a function of time in the dissolution of 60 P ₂ O ₅ - CaO -	
	Na ₂ O gla	sses in distilled water at 37°C.	88
Fig.30:	Effect of	replacement of Na ₂ O by CaO on dissolution rate of P ₂ O ₅ - CaO	
	- Na ₂ O gl	asses.	89
Fig.31:	Effect of	replacement of CaO by P ₂ O ₅ on dissolution rate of P ₂ O ₅ - CaO	
-	- Na ₂ O gl	asses.	89
Fig.32:	Variation	of weight loss with time in the dissolution of 70 P ₂ O ₅ - 20CaO -	
	(10 - x) N	$Ia_2O - x Ag_2O$ glasses, $x = 0, 0.5, 1, 2 \text{ mol}\%$, in distilled water at	
	37°C.		90

List of Figures

Fig. No.	P. No.	
Fig.33:	Variation of weight loss with time in dissolution of $(70 - x) P_2O_5 - 30 CaO$ -	
	xAg ₂ O glasses, $x = 0, 0.5, 1, 2$ mol%, in distilled water at 37°C.	90
Fig.34:	Variation of weight loss per unit area with time in dissolution of 65 P ₂ O ₅ -	
	10 CaO - $(25 - x)$ Na ₂ O - x Ag ₂ O glasses, $x = 0, 0.5, 1, 2$ mol%, in distilled	
	water at 37°C.	91
Fig.35:	Variation of weight loss with time in dissolution of $60P_2O_5$ - $20CaO$ - $(20 - x)$	
	Na ₂ O - x Ag ₂ O glasses, $x = 0, 0.5, 1, 2$ mol%, in distilled water at 37°C.	91
Fig.36:	Variation of weight loss with time in dissolution of $60P_2O_5$ - $30CaO$ - $(10 - x)$	
	Na ₂ O - x Ag ₂ O glasses, $x = 0, 0.5, 1, 2$ mol%, in distilled water at 37°C.	92
Fig.37:	Effect of Ag_2O content on the dissolution rate of P_2O_5 - CaO - Na_2O -	
	Ag ₂ O glasses.	92
Fig.38:	pH variation with time during dissolution of some P ₂ O ₅ - CaO - Na ₂ O	
	glasses.	95
Fig.39:	pH variation with time during dissolution of $70P_2O_5 - 20CaO - (10 - x)$	
	$Na_2O - xAg_2O$ glasses, $x = 0, 0.5, 1, 2 \text{ mol}\%$.	95
Fig.40:	pH variation with time during dissolution of (70 - x) P ₂ O ₅ - 30CaO - x Ag ₂ O	
	glasses, $x = 0, 0.5, 1, 2 \text{ mol}\%$.	95
Fig.41:	pH variation with time during dissolution of $65P_2O_5$ - $10CaO$ - $(25 - x)$	
	Na ₂ O - x Ag ₂ O glasses, $x = 0, 0.5, 1, 2 \text{ mol}\%$.	95
Fig.42:	pH variation with time during dissolution of $60P_2O_5 - 20CaO - (20 - x)$	
	$Na_2O - x Ag_2O$ glasses, $x = 0, 0.5, 1, 2 mol\%$.	96
Fig.43:	pH variation with time during dissolution of $60P_2O_5$ - $30CaO$ - $(10 - x)$	
	$Na_2O - x Ag_2O$ glasses, $x = 0, 0.5, 1, 2 mol\%$.	96
Fig.44:	pH variation with D. _R for some P ₂ O ₅ - CaO - Na ₂ O glasses.	96
Fig.45:	pH variation with D _R for $70P_2O_5$ - $20CaO$ - $(10 - x) Na_2O$ - xAg_2O	
	glasses, $x = 0, 0.5, 1, 2 \text{ mol}\%$.	96
Fig.46:	pH variation with D. _R for $(70 - x)$ P ₂ O ₅ - 30CaO - x Ag ₂ O glasses,	
	x = 0, 0.5, 1, 2 mol%.	97