Chemical and Phytoremediation Studies on the Treatment of Industrial Wastewater

A Thesis Presented
To
Chemistry Department
Faculty of Science
Cairo University

By Ghadir Aly Fouad El-Chaghaby

Regional Center for Food and Feed
Agriculture Research Center
(M. Sc. In Analytical Chemistry, 2007 – Cairo University)

For

The degree of
Doctor of Philosophy
In
Analytical Chemistry

Approval Sheet for Submission

<u>Title of (Ph.D.) Thesis:</u> Chemical and Phytoremediation Studies on the Treatment of Industrial Wastewater.

Name of the candidate: Ghadir Aly Fouad El-Chaghaby

The thesis has been approved for submission by the supervisors:

1. Prof. Dr. Nour El-Din T. Abdel-Ghani

Signature:

2. Prof. Dr. Ahmad kamel Hegazy

Signature:

3. Prof. Dr. Said A. Hassan

Signature:

Prof. Dr. M.M. Shoukry

Chairman of Chemistry Department Faculty of Science-Cairo University

Acknowledgement

First and foremost, all the praises and thanks are to **ALLAH** for his limitless help and guidance and peace be upon his **Prophet**.

I express my deep thanks, ultimate appreciation, gratitude and respect to **Professor Dr. Nour El-Din T. Abdel-Ghani**, professor of Inorganic and Analytical Chemistry, Chemistry Department Faculty of Science, Cairo University, for leading me to the environmental research field and suggesting the thesis topic. I am also grateful to him for his supervision, constant support, unflagging enthusiasm, and generosity of spirit, ideas, resources, and opportunities throughout this dissertation. His willingness to teach me will always be appreciated.

My thanks and appreciations to **Professor Dr. Ahmad K. Hegazy**, professor of Conservation & Applied Ecology in Botany Department, Faculty of Science, Cairo University, for his supervision, understanding support, guidance and wisdom. I am also grateful to him especially for suggesting the thesis topic, guiding me in the field and for igniting my curiosity about biology of plants. His encouragement will always be appreciated.

I thank and express my appreciations and gratitude to Professor Dr. Said A. Hassan, Regional Center for Food and Feed, Agriculture Research Center, for his supervision and continuous support at work. His kind help and support will always be appreciated.

Thanks to my friends and colleagues who gave me generously of their time and who were willing to help me in the experimental work as well.

My gratitude and love to my dear mother and father who have supported and seen me through the best and worst times of this thesis. Special thanks to my father for accompanying me in all my field trips during my work. Thanks to my brother Mohamed and my lovable sister Marwa for their spiritual support.

The authoress

ABSTRACT

Name: Ghadir Aly Fouad El-Chaghaby.

Title of thesis: Chemical and phytoremediation studies on the treatment of industrial

wastewater.

Degree: Ph.D. of Science, Cairo University 2010.

The use of living plants and /or non-living plants biomasses is an attractive option for the treatment of industrial wastewater and removal of a large number of different contaminants in an environmental friendly way. In the first part of this study, wastewater, sediment and Typha domingensis plant samples were collected from the industrial zone at El-Sadat city in Egypt. Samples analyses revealed that wastewater samples contained aluminium, iron, zinc and lead ions with concentrations exceeding the permissible limits set by the Egyptian environmental laws. It has been found that Typha domingensis growing in the study area was capable of accumulating the studied metal ions preferentially from water than from sediments. The accumulation of metals by plant was restricted to its roots as the translocation factor was less than unity. Rhizofiltration was found to be the best mechanism to explain Typha phytoremediation capability. In the second part of the study, the effectiveness of Typha domingensis leaf powder for simultaneous removal of Al, Fe, Zn and Pb from aqueous solution was assessed. Batch experiments were carried out. The sorption process was found to be best described by the second order rate kinetics. The applicability of three equilibrium isotherm's models was investigated and was found to follow the following order: Langmuir > Freundlich > Temkin, for all the studied metal ions. A full 2³ factorial design was then employed to obtain the best conditions of biosorption. Three factors were screened namely: temperature, pH, and biosorbent dosage. The factors were varied at two levels for each. The effects of each factor as well as the interaction effects of the factors on the biosorption process were obtained. The pH was found to be the most significant factor for the metal ions uptake. The infrared spectra of native and exhausted Typha leaf powder confirmed ions-biomass interactions responsible for sorption. Scanning electron micrographs confirmed the porous nature of the biosorbent surface.

Keywords: Sadat city; *Typha domingensis*; bioconcentration factor; translocation factor; aluminium; iron; zinc; lead; rhizofiltration; biosorption; kinetics; equilibrium isotherms; factorial experimental design; elemental analysis; infrared spectra; scanning electron microscopy.

Supervisors:

Prof. Dr. Nour El-Din T. Abdel-Ghani

Professor of Inorganic and Analytical Chemistry

Chemistry Department, Faculty of Science, Cairo University

Prof. Dr. Ahmed K. Hegazy

Professor of Conservation & Applied Ecology

Botany Department, Faculty of Science, Cairo University

Prof. Dr. Said A. Hassan

Regional Center for Food and Feed

Agriculture Research Center

Prof. M. M. Shoukry

Chairman of Chemistry Department Faculty of Science-Cairo University

LIST OF FIGURES

- **Fig. 1.1** Distribution of enterprises for the different industrial sectors in Egypt.
- **Fig. 1.2** Map of Egypt showing location of some new industrial cities.
- **Fig. 1.3** Location maps of El-Sadat city (A) location of the city on Egypt's map and (B) city location along Cairo-Alex desert road.
- **Fig. 1.4** *Typha domingensis* plant from industrial wastewater pond photos taken at El-Sadat city (A) before and (B) after uprooting.
- Fig. 3.1 Location of wastewater ponds at the study area
- **Fig. 4.1** Different *Typha* parts: (A) roots & rhizomes, (B) leaf bases, (C) green leaf parts and (D) yellow leaf parts.
- **Fig. 4.2** Concentrations of Aluminium (III), Iron (III), Zinc (II) and Lead (II) in different *Typha* parts in summer and winter as compared to control.
- **Fig. 4.3** Pathway of metals uptake in plants.
- **Fig. 4.4** Effect of contact time on the removal of Al (III), Fe (III), Zn (II) and Pb(II) by adsorption onto *Typha* biomass; pH:2.5; biomass weight: 0.5g/50mL; shaking speed:100rpm;temp.:25°C.
- **Fig. 4.5** Pseudo first-order sorption kinetics of (a) Al (III), (b)Fe (III),(c) Zn (II) and (d)Pb(II) by adsorption onto *Typha* biomass; pH:2.5; biomass weight: 0.5g/50mL; shaking speed:100rpm;temp.:25^oC.
- **Fig. 4.6** Pseudo second-order sorption kinetics of (a) Al (III), (b)Fe (III),(c) Zn (II) and (d)Pb(II) by adsorption onto *Typha* biomass; pH:2.5; biomass weight: 0.5g/50mL; shaking speed:100rpm;temp.:25^oC
- Fig. 4.7 Effect of initial metal ions concentration on their removal (a) Al (III), (b)Fe (III),(c) Zn (II) and (d)Pb(II) by adsorption onto *Typha* biomass; pH:2.5; biomass weight: 0.5g/50mL; shaking speed:100rpm; temp.:25°C

- **Fig. 4.8** The linearized Langmuir adsorption isotherms of (a) Al (III), (b)Fe (III),(c) Zn (II) and (d)Pb(II) by *Typha* biomass; pH:2.5; biomass weight: 0.5g/50mL; shaking speed:100 rpm;temp.:25^oC.
- **Fig. 4.9** The linearized Freundlich adsorption isotherms of (a) Al (III), (b)Fe (III),(c) Zn (II) and (d)Pb(II) by *Typha* biomass; pH:2.5; biomass weight: 0.5g/50mL; shaking speed:100 rpm;temp.:25°C
- **Fig. 4.10** The Temkin adsorption isotherms of (a) Al (III), (b)Fe (III),(c) Zn (II) and (d)Pb(II) by *Typha* biomass; pH:2.5; biomass weight: 0.5g/50mL; shaking speed:100 rpm;temp.:25^oC
- Fig. 4.11 Main effects plot for % removal of (a) Al^{3+} , (b) Fe^{3+} ,(c) Zn^{2+} and (d) Pb^{2+} .
- **Fig. 4.12** Normal probability plot of the standardized effects for Al³⁺ removal%.
- **Fig. 4.13** Normal probability plot of the standardized effects for Fe³⁺ removal%.
- **Fig. 4.14** Normal probability plot of the standardized effects for Zn²⁺ removal%.
- **Fig. 4.15** Normal probability plot of the standardized effects for Pb²⁺ removal%.
- **Fig. 4.16** Pareto chart of the standardized effects for Al ³⁺ % removal.
- Fig. 4.17 Pareto chart of the standardized effects for Fe³⁺% removal.
- Fig. 4.18 Pareto chart of the standardized effects for Zn²⁺% removal.
- Fig. 4.19 Pareto chart of the standardized effects for Pb²⁺% removal.
- **Fig. 4.20** Normal probability plot for the removal percentages of (a) Al^{3+} , (b) Fe^{3+} ,(c) Zn^{2+} and (d) Pb^{2+} .
- Fig. 4.21 Structure of cellulose matrix.
- Fig. 4.22 Scheme of possible interaction between metal ion (M^{3+}) and cellulose.
- **Fig. 4.23** Scanning electron micrograph of *Typha* biomass (x100).
- **Fig. 4.24** FTIR spectra of fresh-dried (A) and metal-loaded (B) *Typha domingensis* biomass.

LIST OF TABLES

- **Table 1.1** Egyptian regulations for discharges to water bodies and sewers (selected items).
- **Table 1.2** Major water pollutants by industrial sector.
- Table 2.1
 Important contaminants of concern in industrial wastewater treatment.
- **Table 3.1** The wavelengths and detection limits for each element using ICP-OES.
- **Table 3.2** Initial ions concentrations in the different experimental runs.
- **Table 3.3** High and low levels of factors.
- **Table 4.1** Water Quality Monitoring Data (values are mean \pm S.D.)
- **Table 4.2** Tested elements concentration in sediments and the normal and critical ranges of metals in soils as well as the toxicity status.
- **Table 4.3** Correlation between elements concentrations in sediments and water.
- **Table 4.4** Mean values for elements accumulation by different *Typha domingensis* parts growing in the control site and industrial wastewater pond in summer and winter.
- **Table 4.5** Bio-concentration and translocation factors of Al, Fe, Zn and Pb.
- **Table 4.6** Correlation matrix between elements concentrations in water, sediment and plant.
- **Table 4.7** The first-order and the second-order sorption rate constants for Al $^{3+}$, Fe $^{3+}$, Zn $^{2+}$ and Pb $^{2+}$
- **Table 4.8** Sorption isotherm coefficients of Langmuir, Freundlich and Temkin models applied to Al ³⁺, Fe ³⁺, Zn²⁺ and Pb ²⁺ biosorption by *Typha* biomass.
- **Table 4.9** Different values of separation parameter (R_L) for the different initial concentrations of Al³⁺, Fe ³⁺, Zn²⁺ and Pb ²⁺.

- **Table 4.10** Standard Gibb's free energy change ΔG° for the adsorption process of Al ³⁺, Fe ³⁺, Zn²⁺ and Pb ²⁺ions by *Typha* biomass at 25°C.
- **Table 4.11** Experimental factorial design results for Al ³⁺, Fe ³⁺, Zn²⁺ and Pb ²⁺ removal.
- **Table 4.12** Estimated Effects and Coefficients for Al³⁺% removal (coded units)
- **Table 4.13** Estimated Effects and Coefficients for Fe³⁺% removal (coded units)
- **Table 4.14** Estimated Effects and Coefficients for Zn²⁺ % removal (coded units)
- **Table 4.15** Estimated Effects and Coefficients for Pb ²⁺% removal (coded units)
- **Table 4.16** Analysis of Variance for Al³⁺ % removal (coded units)
- **Table 4.17** Analysis of Variance for Fe³⁺% removal (coded units)
- **Table 4.18** Analysis of Variance for Zn²⁺% removal (coded units)
- **Table 4.19** Analysis of Variance for Pb ²⁺% removal (coded units)
- **Table 4.20** Surface functional groups observed on *Typha biomass* by FTIR spectroscopy

TABLE OF CONTENTS

Char	ter ((1)	
CHar	JULI 1	(. ,	

Introduction	1
1. Performance of Manufacturing Industry in Egypt	1
2. Fresh water supplies and wastewaters	2
3. Policies directed at industrial environmental management	4
4. Metals contamination	8
5. Industrial wastewater treatment	10
6. Study species	11
Objectives of the study	13
Chapter (2)	
Review of Literature	14
1- Industrial wastewater characteristics and pollutants	14
2- Conventional methods for industrial effluents treatment	17
3- Phytoremediation for wastewater treatment.	19
3.1. Phytoextraction/phytoaccumulation	21
3.2. Phytostabilization	24
3.3. Phytotransformation/phytodegradation	25
3.4. Phytovolatilization	26
3.5. Rhizofiltration	27
4- Removal of metals by non-living biomass of plant origin (biosorption)	40
5- Factorial experimental design for optimizing the biosorption process.	49
Chapter (3)	
Materials and Methods	51
1-Description of the study area	51
2- Water, Sediments and Plant sampling	51
3- Metals analysis	54
3-1- Samples digestion methods	54
3-1-1- Water samples	54
3-1-2- Sediment samples	55
3-1-3- Plant samples	56
3-2- Metals and other elements determination	56

4-Water analysis	58
4-1-Total Dissolved Solids (TDS)	58
4-2- Total Kjeldahl Nitrogen (TKN)	59
4-3- Total Phosphorus as P (TP)	60
5- Biosorbent Characterization	62
5- 1- Fourier Transformation Infra-Red (FTIR) analysis	62
5- 2- Elemental analysis	62
5- 3- Fiber fraction analysis	62
5- 4- Scanning Electron Microscope (SEM) analysis	62
6- Biosorption experiment.	63
6-1- Instruments	63
6-2- Effect of Contact time and Biosorption kinetics	63
6-3- Effect of initial metal ions concentrations and Equilibrium Isothermal modeling	65
6-4- Standard Gibb's free energy change of the biosorption process	68
6-5- Factorial experimental design	68
7- Evaluation of phytoremediation parameters	70
7-1- The bio-concentration factor (BCF)	70
7-2- Translocation factor (TF)	70
8- Statistical analysis	71
Chapter (4)	
Results and Discussion	72
Part I: Phytoremediation potentiality of <i>Typha domingensis</i> (Case study)	72
4-1- Wastewater analysis	72
4-2- Sediments analysis results	76
4-3- Plant analysis	78
4-4- bioaccumulation and translocation factors	83
Part II : Biosorption Experiments	90
4-1- Effect of Contact time and Biosorption kinetics	90
4-2- Effect of initial metal ions concentrations	102
4-2-1- Equilibrium modeling and Thermodynamics of adsorption process	103
4.3- Factorial experimental design	114

4.4- Biosorbent characterization	132
4.4.1. C.H.N. elemental analysis	132
4.4.2. Fiber fraction determination	132
4.4.3. Scanning Electron Microscopy (SEM)	135
4.4.4. Fourier Transformation Infra-Red (FTIR) analysis	136
Conclusion & Remarks	140
Summary	144
References	148
Arabic Summary	i

CHAPTER 1

INTRODUCTION

Water quality management, water pollution control and environmental protection are the main issues to save our future. Survival of human beings mainly depends on how we manage and use the environmental resources today. Water is considered the most important natural resource for man to develop his prosperity as well as his essential needs.

Industrialization is considered the cornerstone of the development strategies due to its significant contribution to the economic growth and human welfare, however, in most developing countries it led to serious environmental degradation. The earnest intentions are now not only targeting the qualitative and quantitative treatment of the industrial wastes but also attempting to avert their hazards to human health and restoring the quality of the environment (1).

1. Performance of Manufacturing Industry in Egypt

As industry is a major contributor to the Egyptian economy, the rapid pace of industrialization in the last few decades has been remarkable. The Egyptian manufacturing sector is concentrated on quite a few industries. Seven industries account for over 80% of establishments in the manufacturing sector. The three largest industries are textiles, food and beverages, and furniture followed by non-metallic minerals, metal production, chemicals and basic metals.

1

Industry is the dynamic engine for growth essential to rapid economic and social development (2). Figure (1.1) gives the number of enterprises for the different Egyptian industrial sectors.

Most of the manufacturing establishments in Egypt are located within the boundaries of large cities where the utilities and supporting facilities are available. The Egyptian government's policy during the last two decades was oriented to build new industrial communities to act as new poles of attraction to relief the fragile ecosystem of the Nile valley and Delta from over population, such as 10th Ramadan, 6th October, El-Sadat, Al-Obour, Badr and Borg El-Arab cities (Fig.1.2). The industrial activities in these new cities range from metal production, food processing, textile finishing, to plastics, chemicals and pharmaceutical and paper production (3).

2. Fresh water supplies and wastewaters

It is well known that the water resources in Egypt are limited to the 55.5 billion m³/ year, share of Egypt in the flow of the river Nile, the deep groundwater in the deserts (mostly non-renewable), and a few amount of rainfall in the northern coastal area and Sinai. Meanwhile, water demand is continually increasing due to population growth, industrial development, and the increase of living standards. Because of population growth, the per capita share of water has dropped dramatically to 800 m³/capita, which, by international standards, is considered below the "Water poverty limit". The value may even decrease to 500 m³/capita by the year 2025 (4).

■ Mines, quarries, oil drilling and refining
 ■ Foodstuff, beverages and tobacco
 □ Wood, wood products and upholstering
 ■ Basic chemicals and allied products
 ■ Basic metallurgy
 ■ Metallurgical products, machinery and equipment
 ■ Codstuff, beverages and tobacco
 □ Wood, wood products and upholstering
 ■ Basic chemicals and allied products
 ■ Basic metallurgy
 ■ Other process industries

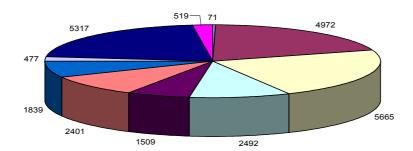


Fig. (1.1): Distribution of enterprises for the different industrial sectors in Egypt.

Fig. (1.2): Map of Egypt showing location of some new industrial cities.

3

Degradation of water quality is a major issue in Egypt. The severity of the problem varies among different water bodies depending on water flow, use pattern, population density, extent of industrialization, availability of sanitation systems and the social and economic conditions existing in the area of the water source. Discharge of untreated or partially treated industrial and domestic wastewater, leaching of pesticides and residues of fertilizers; and navigation are the most important factors that affect the quality of water (5).

The industrial sector is an important user of natural resources and a contributor to environmental pollution. There are estimated to be some 24,000 industrial enterprises in Egypt, about 700 of which are major industrial facilities. The spatial distribution of industry in Egypt is influenced by the size of the employment pool, availability of services, access to transportation networks, and proximity to principal markets.

The manufacturing facilities are therefore often located within the boundaries of major cities, in areas with readily available utilities and supporting services. In general, the majority of heavy industry is concentrated in Greater Cairo and Alexandria.

Industrial demand for water in the year 2000 has been reported to be 3.6 billion m³/ year. By the year 2017, the industrial demand for water is expected to reach 5.5 billion m³/ year. Consequently, a corresponding increase in the volume of industrial wastewater is expected (5).

3. Policies directed at industrial environmental management

The period 1990-2000 witnessed the most important environmental initiative in Egypt since the ratification of environment law 4/1994. This law generally prohibits the use of waterways for the disposal of solid wastes and the discharge of untreated liquid wastes from industries.

4