Comparison Of Auditory Steady- State Response, Auditory Brain Stem Response And Behavioral Test Methods In Evaluation Of Hearing In Infants And Children

Thesis

Submitted in partial fulfillment of MD degree in Audiology

Salwa Mahmoud Abd el Latif el Hadeka *M.B.*, *B.Ch.*, *M.Sc*

Supervisors

Prof. Dr. Mohamed Tarek Ghannoum

Professor of Audiology
Faculty of Medicine
Cairo University

Dr. Mona Hassan Selim

Assistant Prof. of Audiology
Faculty of Medicine
Cairo University

Dr. Amira Maged El Shennawy

Assistant Prof. of Audiology
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2010

بسم الله الرحمن الرحيم

" قالوا سبحانك لا علم لنا الا ما علمتنا انك أنت العليم الحكيم "

صدق الله العظيم الآيه ٣٢ سورة

البقرة

To My Family

Acknowledgment

First and above all thanks to *God*, the most merciful and who is behind all success.

I would like to express my all sincere and deepest gratitude to **Prof. Dr. MOHAMED TAREK GHANNOUM**, Professor of Audiology, Faculty of Medicine, Cairo University, for his kind supervision, helpful advice and giving much of his precious time and constant support throughout the conduction of this work.

I wish to thank **A. Prof. Dr. MONA HASSAN SELIM**, Assistant Professor of Audiology, Faculty of Medicine, Cairo University, for her generous assistance, kind cooperation and valuable advice throughout this work.

I am most grateful to **A. PROF. Dr. AMIRA MAGED EL SHENNAWY**, Assistant Professor of Audiology, Faculty of Medicine, Cairo University, for her continuous efforts, great help, and advices to make this work at its best.

My deepest thanks for my professors and colleagues of Audiology unit of Hearing and Speech Institute, Cairo University for their continuous support.

Salwa Mahmoud, 2010

Abstract

The most widely used auditory evoked potential (AEP), is auditory evoked brain stem response (ABR). Another AEP is the auditory steady state response (ASSR). ASSR allows for frequency specific threshold determination. **Objective:** To study the results of ABR, ASSR and behavioral tests in infants and young children and to determine the best methods for accurate detection of hearing loss in this age group. **Methods:** A total number of 60 infants and children were examined. Their age range was 7 months to 8 years and they were of both sexes. They were all subjected to the following tests; basic audiologic evaluation according to age group, ABR for threshold detection and ASSR with carrier frequencies 250, 500, 1000, 2000 and 4000 Hz. Results: There was a significant difference between PTA and ASSR thresholds at all frequencies among the tested groups. The difference decreases in severe and profound hearing losses (HLs). There was a statistically significant correlation between PTA and ASSR at different frequencies. There was a significant difference between ABR thresholds and average threshold of PTA (1000, 2000 and 4000 Hz). Statistical analysis of the correlations between ABR thresholds and average PTA thresholds (1000, 2000, and 4000 Hz) revealed a significant correlation in cases of moderate to profound HLs. There was a significant difference between ABR thresholds and average threshold of ASSR (1000, 2000 and 4000 Hz). Statistical analysis of the correlation between ABR thresholds and ASSR thresholds (1000, 2000 and 4000 Hz) showed a significant correlation in cases of mild, moderately severe, severe and profound HLs. No significant difference was found between young and older children as regards ASSR and ABR thresholds. There was a significant difference in the amplitude of ASSR response between young and older children at 1000 Hz in minimal HL and at 250 Hz in mild and moderately severe HLs. ASSR response amplitude increased with increasing intensity. At severe and profound hearing losses, the amplitude tends to be smaller as compared to normal and other milder degrees of HLs which is obvious at 2000 and 4000 Hz. Conclusion: ASSR cannot reliably differentiate between normal ears and those with mild hearing loss and the accuracy of the results improves with severe to profound sensorineural hearing losses. The best ASSR frequencies to correlate with PTA were 1000, 2000 and 4000 Hz. ABR thresholds were best correlated with the average of PTA and ASSR (1000, 2000 and 4000 Hz) in severe and profound hearing losses. At higher

degrees of HL, the slope of ASSR amplitude intensity curves tends to decrease. **Recommendation** of this study is to use a test battery which includes behavioral tests, ABR and ASSR for accurate evaluation and management of hearing loss in infants and young children. Further research on the ASSR amplitude intensity relationship for its possible application in suggesting the presence of recruitment and hence its application in hearing aid fitting.

Keywords:

Auditory steady state evoked response, Auditory evoked brain stem response, Pure tone audiometry, Children, Hearing loss.

CONTENTS

	Page
1. INTRODUCTION& RATIONALE	1
2. AIM OF THE WORK	3
3. REVIEW OF LITERATURE	4
a)Detection and assessment of hearing loss in infants	
and children	4
b)Auditory evoked brain stem response	7
c) Auditory steady state response	10
d)Variables affecting ASSR	44
e)The multiple auditory steady-state evoked response	
(MASTER) technique	50
f)Auditory steady–state evoked response in infants	
and children	56
g) Comparing ASSR, ABR and behavioral hearing tests	59
4. SUBJECTS & METHODS	61
5. RESULTS	70
6. DISCUSSION	125
7. CONCLUSION	139
8. RECOMMENDATIONS	140
9. SUMMARY	141
10. REFERENCES	145
11. ARABIC SUMMARY	1

Abbreviations

ABR: Auditory brain stem response

AM: Amplitude modulation

AM²: Exponential modulation envelopes

AMFR: Amplitude modulated following response

ASSR: Auditory steady–state evoked response

BOA: Behavioral observation audiometry

CF: Carrier frequency

CM: Cochlear microphonic

CPA: Conditioned play audiometry

dB: Decibel

deg: Degree

EEG: Electro-encephalogram

EFR: Envelope following response

EOAEs: Evoked otoacoustic emissions

EPs: Evoked potentials

f: Frequency

FFT: Fast Fourier Transform

FM: Frequency modulation

gr: Group

HL: Hearing level

Abbreviations

Hz: Hertz

IAFM: Independent amplitude and frequency modulation

JCIH: Joint Committee on Infant Hearing

KHz: Kilo Hertz

MASTER: Multiple auditory steady–state evoked response

MF: Modulating frequency

min: Minute

MLAEP: Middle latency auditory evoked potential

MM: Mixed modulation amplitude and frequency

ms: Millisecond

nHL: Normal hearing level

NV: Nano volt

PTA: Pure tone audiometry

rms: Root mean square

SAM: Sinusoidally amplitude modulated tone

sec: Second

SIN³: Sinusoidally amplitude modulated tone with exponential envelope

SN-10: Slow negative response after 10 seconds

SPL: Sound pressure level

SSEP: Steady state evoked potential

UV: Micro volt

VRA: Visual reinforcement audiometry

List of tables

Page

Table (1): Gender distribution of the groups	72
Table (2): Mean, standard deviation and range of age in years in	73
the groups under study	
Table (3): Mean and standard deviation of hearing threshold level	75
of PTA and ASSR at different frequencies in group 1	
Table (4): Mean and standard deviation of hearing threshold level	76
of PTA and ASSR at different frequencies in group 2	
Table (5): Mean and standard deviation of hearing threshold level	77
of PTA and ASSR at different frequencies in group 3	
Table (6): Mean and standard deviation of hearing threshold level	78
of PTA and ASSR at different frequencies in group 4	
Table (7): Mean and standard deviation of hearing threshold level	79
of PTA and ASSR at different frequencies in group 5	
Table (8): Mean and standard deviation of hearing threshold level	80
of PTA and ASSR at different frequencies in group 6	
Table (9): Mean and standard deviation of hearing threshold level	81
of PTA and ASSR at different frequencies in group 7	
Table (10): Mean difference in threshold between PTA and ASSR	82
at different frequencies in the study groups	
Table (11): Mean, SD and range of difference in threshold	84
between PTA and ASSR at different frequencies in group 1	
Table (12): Mean, SD and range of difference in threshold	84
between PTA and ASSR at different frequencies in group 2	
Table (13): Mean, SD and range of difference in threshold	85
between PTA and ASSR at different frequencies in group 3	

Table (14): Mean, SD and range of difference in threshold	85
between PTA and ASSR at different frequencies in group 4	
Table (15): Mean, SD and range of difference in threshold	86
between PTA and ASSR at different frequencies in group 5	
Table (16): Mean, SD and range of difference in threshold	86
between PTA and ASSR at different frequencies in group 6	
Table (17): Mean, SD and range of difference in threshold	87
between PTA and ASSR at different frequencies in group 7	
Table (18): The Pearson correlation coefficient between PTA	93
threshold and ASSR threshold at different frequencies in group 1	
Table (19): The Pearson correlation coefficient between PTA	93
threshold and ASSR threshold at different frequencies in group 2	
Table (20): The Pearson correlation coefficient between PTA	94
threshold and ASSR threshold at different frequencies in group 3	
Table (21): The Pearson correlation coefficient between PTA	94
threshold and ASSR threshold at different frequencies in group 4	
Table (22): The Pearson correlation coefficient between PTA	95
threshold and ASSR threshold at different frequencies in group 5	
Table (23): The Pearson correlation coefficient between PTA	95
threshold and ASSR threshold at different frequencies in group 6	
Table (24): The Pearson correlation coefficient between PTA	96
threshold and ASSR threshold at different frequencies in group 7	
Table (25): Mean and standard deviation of hearing threshold level	103
of ABR and PTA average (1000, 2000 and 4000 Hz) in the tested	
groups	
Table (26): Mean difference in threshold between PTA average	104
(1000, 2000 and 4000 Hz) and ABR in the study groups	

Table (27): Mean, SD and range of difference in threshold	105
between PTA average (1000, 2000 and 4000 Hz) and ABR in the	
tested groups	
Table (28): The Pearson correlation coefficient between ABR	106
threshold and mean PTA threshold (1000, 2000 and 4000 Hz) in	
the 7 groups	
Table (29): Mean and standard deviation of hearing threshold of	107
ABR and ASSR average (1000, 2000 and 4000 Hz) in the tested	
groups	
Table (30): Mean difference in threshold between ASSR average	108
(1000, 2000 and 4000 Hz) and ABR in the study groups	
Table (31): Mean, SD and range of difference in threshold	109
between ASSR average (1000, 2000 and 4000 Hz) and ABR in the	
tested groups	
Table (32): The Pearson correlation coefficient between ABR	110
threshold and average ASSR threshold (1000, 2000 and 4000 Hz)	
in the 7 groups	
Table (33): Mean difference in ASSR threshold at different	112
frequencies between young and older children in the tested groups	
Table (34): Mean difference in ABR threshold between young and	113
older children in the tested groups	
Table (35): Mean and standard deviation of ASSR amplitude at	113
different frequencies between young and older children in group 1	
Table (36): Mean and standard deviation of ASSR amplitude at	114
different frequencies between young and older children in group 2	

Table (37): Mean and standard deviation of ASSR amplitude at	114
different frequencies between young and older children in group 3	
Table (38): Mean and standard deviation of ASSR amplitude at	115
different frequencies between young and older children in group 4	
Table (39): Mean and standard deviation of ASSR amplitude at	115
different frequencies between young and older children in group 5	
Table (40): Mean and standard deviation of ASSR amplitude at	116
different frequencies between young and older children in group 6	
Table (41): Mean and standard deviation of ASSR amplitude at	116
different frequencies between young and older children in group 7	
Table (42): The mean and standard deviation of ASSR amplitude	118
at the different intensities in the tested frequencies in group 1	
Table (43): The mean and standard deviation of ASSR amplitude	119
at the different intensities in the tested frequencies in group 2	
Table (44): The mean and standard deviation of ASSR amplitude	120
at the different intensities in the tested frequencies in group 3	
Table (45): The mean and standard deviation of ASSR amplitude	121
at the different intensities in the tested frequencies in group 4	
Table (46): The mean and standard deviation of ASSR amplitude	122
at the different intensities in the tested frequencies in group 5	
Table (47): The mean and standard deviation of ASSR amplitude	123
at the different intensities in the tested frequencies in group 6	
Table (48): The mean and standard deviation of ASSR amplitude	124
at the different intensities in the tested frequencies in group 7	

List of figures

Figure (1): ABR threshold trace	9
Figure (2): Stimuli used to evoke the ASSR	11
Figure (3): The EEG response	12
Figure (4): Different stimuli used in audiologic evaluation	14
Figure (5): Transient and steady state stimuli	15
Figure (6): Neural generators of ASSR	18
Figure (7): Normal hearing PTA thresholds compared to ASSR	21
thresholds	
Figure (8): Profound hearing loss PTA thresholds compared to	21
ASSR thresholds	
Figure (9): Different stimuli used in ASSR	31
Figure (10): Recording and analysis of auditory steady state	35
responses	
Figure (11a): Graphical analysis of ASSR (supra-threshold	37
stimuli)	
Figure (11b): Graphical analysis of ASSR (sub-threshold	38
stimuli)	
Figure (12): Apparent latency calculation	40
Figure (13): Signals in noise	41
Figure (14): Weighted averaging in ASSR	43
Figure (15): Prediction of behavioral thresholds using	49
regression analysis	
Figure (16): Testing auditory steady state responses	51
Figure (17): Testing MASTER response in one ear stimulation	51
Figure (18): Testing MASTER responses when two ears are	52
stimulated	

Figure (19): Testing MASTER responses to four frequency	53
stimuli	
Figure (20): Threshold estimation using multiple steady state	54
responses	
Figure (21a): Monaural ASSR stimulation	64
Figure (21b): Binaural ASSR stimulation	65
Figure (22a): Test screen of ASSR polar plot response	67
Figure (22b): Test screen of ASSR color plot response	67
Figure (23): Mean hearing threshold level of PTA and ASSR at	75
different frequencies in group 1	
Figure (24): Mean hearing threshold level of PTA and ASSR at	76
different frequencies in group 2	
Figure (25): Mean hearing threshold level of PTA and ASSR at	77
different frequencies in group 3	
Figure (26): Mean hearing threshold level of PTA and ASSR at	78
different frequencies in group 4	
Figure (27): Mean hearing threshold level of PTA and ASSR at	79
different frequencies in group 5	
Figure (28): Mean hearing threshold level of PTA and ASSR at	80
different frequencies in group 6	
Figure (29): Mean hearing threshold level of PTA and ASSR at	81
different frequencies in group 7	
Figure (30): Mean difference in threshold between PTA and	88
ASSR at 250 Hz in the tested groups	
Figure (31): Mean difference in threshold between PTA and	89
ASSR at 500 Hz in the tested groups	
Figure (32): Mean difference in threshold between PTA and	90
ASSR at 1000 Hz in the tested groups	