

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

A STUDY OF THE BIOLOGICAL CHANGES OF OREOCHROMIS NILOTICUS DUE TO LEAD TOXICITY APPLICATIONS

45/13

A Thesis

Submitted to Zoology Department, Faculty of Science, Almenofeya University in Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science

> In Zoology (Ecology)

> > BY

GHADA ABDEL-RAOUF YOSSIF

B Sc. (Science, Zoology) Faculty of Science, Almenofeya University

SUPERVISED BY

Prof. Dr. Elsaved & That

Professor of Fish Mology and Vice

Dean of Faculty of Science for

Postgraduate Mairs,

Prof. Dr. Nabila E. Abdelmeguid

Professor of Cytology and Histology

Faculty of Science,

Alexandria University

Almenofeya University

Dr. Alaa'A. Alne-na-ei

Lecturer of Ecology

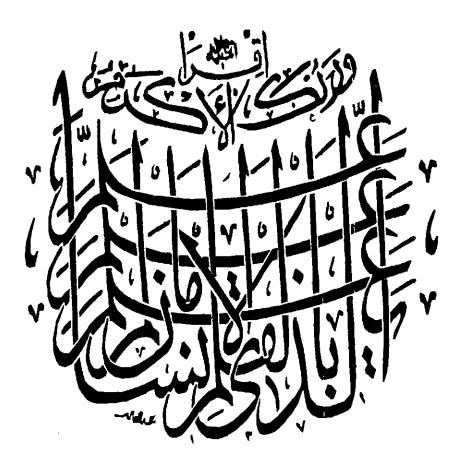
Zoology Department, Faculty of Science

Almenofeya University

Zoology Department

Faculty of Science,

Almenofeya University


1998

م الدول

ا م درا معد صحور عا بدسم - از عار الهار و الاز من ورس سامل عرا در مسر ملی الحید و ری - از شاد الایک و الاز می تعلوم عیم غرا بر الم مید ملا فی - از شار بو قرمها الایک اله و وکیل علوم الوی غرا بر الحی در شاملهٔ السید عبد المبید - از سناد الولیم و الاز منه مولوم ا علی از به نابو به المحاک می الما دی و الرابع صوره و العید الا علی از به نابو به المحاک می المادی عبد الروی المولود و المولود المول

الاحسير والعلوم

591/c2

ACKNOWLEDGMENTS

A. Khallaf, professor of Fish Biology and Vice-Dean of Faculty of Science for Postgraduate Affairs, Almenofeya University, for his critical supervision, suggestion and planning the present

work.

I am specially obligated to **Prof. Dr. Nabila E. Abdelmeguid**, Professor of Histology and Cytology, Faculty of Science, Alexandria University, for her fruitful guidance, assistance, follow-up and sincere device.

I would like to thanks **Dr. Alaa A. Alne-na-ei**, Lecture of Ecology, Faculty of Science, Almenofeya University, for active sharing during the progress of this study.

Great thanks are also due to members of the Electron Microscopic Unit, Faculty of Science, Alexandria University, supervised by **Prof. Dr. Nabila E. Abdelmeguid**, for their skillful service in processing materials for electron microscopy which made the continuity of this work possible.

Finally, I am highly indebted to my husband **Nashaat El-Tokhy** for his endless cooperation and encouragement during carrying out this work and also to **my mother** for warmly taking care of my babies.

CONTENTS

Chapter 1: Introduction and Aim of work.	1
-Chapter II: Material and Methods.	<u>.</u>
Sample collection.] (
Preparation of the tested chemical solution.	1 (
Determination of lethal and sub-lethal doses.	1
Experimental groups.	Ι.
Determination of growth response.	12
Histological studies.	12
Preparation of material of light microscopy.	13
Preparation of material for transmission electron	14
microscopy.	
Statistical analyses.	14
- interval and yses,	15
Chapter III: Results	
A- Biological observation.	
(1) Condition factor of fish (K).	16
(2) Gonado-somatic index (GSI) of females	16
and males.	1.7
(3) Ovary weight of females.	16
(4) Testis weight of males.	17
(5) Liver weight and Hepato-somatic index [HSI].	17
(b) Growth of rish.	18
B- Histological and histopathological observation.	18
Light microscopic observation.	39
(1) Liver.	39
a- Histological features of liver of control group.	39 39
b- Liver of lead treated-group.	4()
(2) Kidney.	48
a- Histological feature of kidney of control group.	48
of rustological changes of kidney in lead acetate-	40
treated fishes.	48
(3) Ovary.	55
a- Histological features of control fish.	55 55
b- Histopathological changes of the ovary in lead acetate-treated fishes	56

(4) Testis.	63
a-Histological feature of control group.	63
b-Histopathological changes of testis in lead	()_,
acetate-treated fishes.	63
Electron microscopic observation.	71
-Electron microscopic observation of control group.	71
-Ultrastructural observation of sub-lethal group.	81
-Electron microscopic observation of lethal group.	92
Chapter IV: Discussion.	103
Chapter V: Summary and Conclusion.	126
Chapter VI: References.	
Anaprei VI. References.	134
Chapter VII: Arabic summary.	

NTRODUCTION

INTRODUCTION

Ī

Since the beginning of the century, urban, industrial and agricultural development has caused a deterioration of water quality in the majority of the world. However, in recent years, there has been an increasing awareness that the aquatic pollution and other anthropogenic impact on water resources have the potential to damage natural fish stocks. Consequently, the effect of various contaminants on fish populations has become an area of active research. This includes the impact of contaminants and water quality on survival of fish larvae in the natural habitat (Lenwood et al., 1985); the effect of heavy metals on fish health (Pelgrom, et al., 1995); the effect of organic contaminants on fish reproduction (Hansen et al., 1985); the impact of halogenated organic substances on ovarian development of fish (Holm, et al., 1994); the impact of domestic sewage on fish organs (Narain, 1990 and Bucher and Hofer, 1993); the effect of petroleum pollutants to fish and benthic organisms (Panigrahi and Konar, 1989 and Saha and Konar, 1990) and the impact of different pesticides on fish biology (Newsome and Andrews, 1993 and Khallaf et al., 1994).

The histological effects of pesticides and related chemicals in livers of fishes was studied by (Couch, 1975).

Heavy metals are evidently habitual pollutants of aquatic environments (Dallinger et al., 1987 and Atchison et al., 1987). They are particularly threatening because they are highly toxic, they persist over a long period in the environment, and they favour bioaccumulation, thus constituting a potential source of direct pollution for man (Atchison et al., 1987).

The impact of heavy metals on fishes are diverse so that it can be classified into different items including the accumulation of heavy metals in fish organs and their direct or indirect influences on human health; the impact of hazardous metals on fish health and the ecological influences of the heavy metals on wild fish, and the consequent damages of the natural habitats (Alne-na-ei, 1998).

On the other hand, the effect of anthropogenic emissions (such as domastic sewage) on gills, kidney and liver of brown trout (*Salmo trutta*) was reported by (Franz and Rudelf, 1993).

Environmental exposure to heavy metals has been shown to have a pathological effect on calcified tissues in teleost fish (Muramoto, 1981, Sauer and Watabe, 1984 and Abdel-Moneium, 1996). Hilmy *et al.*, (1987), studied the toxicity in *Tilapia zillii* and *Clarias lazera* induced by zinc, seasonally. In some species, adult fish exposed to metals showed a loss of calcium from the bones presumably caused by a disruption in calcium metabolism (Larsson, 1975).

The impact of various heavy metals on the histological lesions of different fish species, both in the field and in the laboratory, were investigated, in a wide scale, using light and electron microscopy (Alne-na-ei, 1998). These include studies restricted to examination of the effect of metals based on the cytological changes (Segner, 1987; Braunbeck *et al.*, 1990) and Roncero *et al.*, 1992.) and the alterations of tissue integrity (Wong, *et al.*, 1977 and Lacroix, *et al.*, 1993). Kholar and Holzel (1980) investigated the health condition of flounder and smelt by inspecting liver, kidney, spleen and gastrointestinal ract, and they recorded influnce of toxic industrial compounds on the health of both species.

Lead (Pb) is a trace constituent in minerals, water, lants and animals, as well as air. Much of the inorganic lead is ound to oxides, sulfides, hydroxides and carbonates, soil water r in the water column (Weber, 1993).

Depending upon pH, temperature and available ligand oncentrations, the solubility of lead in water may vary. Lead osses solubility rapidly above pH 6.5 (Nriagu, 1978).

The toxicity of metals to aquatic biota depends on the bioavailable fraction of the metals in the environment. The ioavailable fraction of lead in water is modified by a biotic ctors including pH; the concentration of divalent cations, such Ca²⁺ and Mg²⁺; and the concentrations and binding strengths organic and inorganic ligands (Wang, 1987).