# بسم الله الرحمن الرحيم

## Recent trends in Diagnosis & Treatment of Choroidal tumours

Essay
Submitted for partial fulfillment of
Master degree in Ophthalmology
By

## Rasha Abdelmonem Mohammed Sedeek M.B.B.Ch.

#### **Supervisors**

#### Dr. Mahmoud Ahmed Heshmat Abusteit

Professor of ophthalmology Faculty of medicine Cairo University

#### Dr. Amr Ahmed El-Bakry

Assistant Professor of ophthalmology Faculty of medicine Cairo University

#### Dr. Rania Ahmed Abdelsalam

Assistant Professor of ophthalmology Faculty of medicine Cairo University

> Faculty of medicine Cairo University 2010

## الاساليب الحديثة في تشخيص وعلاج اورام الغلاف المشيمي للعين

رسالة تمهيدا للحصول علي درجة الماجستير المقدمه من الطبيبة

رشا عبدالمنعم محمد صديق بكالوريوس الطب والجراحة

تحت اشراف

الأستاذ الدكتور محمود أحمد حشمت أبوستيت

أستاذ طب وجراحة العيون كلية الطب – جامعة القاهرة

الأستاذ الدكتور

عمرو أحمد البكري

أستاذ مساعد طب وجراحة العيون كلية الطب – جامعة القاهرة

الأستاذ الدكتور

رانيا احمد عبدالسلام

أستاذ مساعد طب وجراحة العيون كلية الطب - جامعة القاهرة

> كلية طب القصر العيني جامعة القاهرة ٢٠١٠

## Acknowledgement

I would like to express my sincere gratitude and deepest appreciation to Professor Dr. **Mahmoud Abusteit**, Professor of ophthalmology, Faculty of medicine, Cairo University, for his great effort in revising and supervising this work.

My profound thanks and appreciation to Dr. Amr El-Bakry, Assistant Professor of ophthalmology, Faculty of medicine, Cairo University for his assistance, keen supervision and great help.

I would like to express my deepest thanks and great appreciation to **Dr**. **Rania Ahmed Abdelsalam**, Assistant Professor of ophthalmology, Faculty of medicine, Cairo University for her patience, great effort and assistance which contributed a lot to the final shape of this work.

Finally I would like to extend my deepest thanks to my husband for his support, love and encouragement along the way, and my deepest gratitude to my mother and the soul of my father.

## **Content**

| <u>List of abbreviations</u>     | i   |
|----------------------------------|-----|
| <u>List of figures</u>           | iii |
| Introduction                     | vi  |
| Review of literature             |     |
| - Anatomy of the choroid         | 1   |
| - Pathology of choroidal tumours | 6   |
| - Diagnosis of choroidal tumours | 36  |
| - Treatment of choroidal tumours | 80  |
| Summary                          | 154 |
| References                       | 157 |
| Arabic summary                   | 176 |

#### List of abbreviations

AA: Ancorative acetate.

AF: Autofluorescence.

ARM: Age related maculopathy.

ARMD: Age related macular degeneration.

APC: Antigen presenting cells

CEA: Carcino-embryonic antigen.

CM: Choroidal melanoma.

CNS: Central nervous system.

CNV: Choroidal neo-vascularization.

COMS: Collaborative ocular melanoma study.

Cox-2: Cyclo-oxygenase 2.

CT: Computerized tomography.

DC: Dendritic cells.

DSG: Melanoma disease site group.

DHE: Dihaemato-porphyrin esters, ethers.

EBRT: External beam radiation therapy.

ELISA: Enzyme linked immunosorbent assay.

FAF: Fundus autofluorescence.

FGF: Fibroblast growth factor.

FTA: Flourescine treponema antibody.

Gy: Gray.

GyE: Gray equivalent.

HDR: High dose rate.

HLA: Human leucocytic antigem.

HPD: Haemato-porphyrin derivative.

IBT: Iodine<sup>125</sup> brachytherapy,

ICG: Indocyanine green.

ICGA: Indocyanine green angiography.

IFN: Interferon. IL: Interleukin.

LAK: Lymphokine activated killer cells.

LDH: Lactate dehydrogenase.

MHC: Major histocompatibility complex.

MRI: Magnetic resonance imaging.

PBMC: Peripheral blood mono-nuclear cells.

PBRT: Proton beam radiotherapy. PCR: Polymerase chain reaction.

Pd: Pallidum.

PDT: Photo-dynamic therapy.

PEBC: Program in evidence based medicine.

PEDF: Pigment epithelium derived factor.

PET: Position emission tomography.

PET/CT: Position emission tomography / Computed tomography.

RPE: Retinal Pigment Epithelium.

Ra P<sup>32</sup>: Radioactive phosphorus uptake.

RRD: Rheumatogenous retinal detachment.

RT-PCR: Real time-Polymerase chain reaction.

Ru: Ruthenium.

Sr: Strontium.

STR: Stereotactic radiation. TA: Triamcinolone acetonid.

TAM: Tumour associated macrophage.

TIL: Tumour infiltrating lymphocyte.

TNF: Tumour necrosis factor.

TSP: Thrombo-spondin.

TTT: Transpupillary thermo-therapy.

VDRL: Venereal disease research laboratory.

VEGF: Vascular endothelial growth factor.

WST: Water-soluble tetrazolium.

## **List of figures**

| Figure (1): Section in the choroid                                       | 5  |
|--------------------------------------------------------------------------|----|
| Figure (2): Interior of the eye                                          | 5  |
| Figure (3): Choroidal melanoma. Histologic section (spindle A cells)     | 9  |
| Figure (4): Choroidal melanoma. Histologic section (spindle B cells)     | 9  |
| Figure (5): Choroidal melanoma. Histologic section (epithelioid cells)   | 9  |
| Figure (6): Choroidal melanoma, mushroom shaped                          | 11 |
| Figure (7): Choroidal melanoma, mushroom shaped with retinal detach.     | 11 |
| Figure (8): Choroidal melanoma of the optic nerve                        | 12 |
| Figure (9): Choroidal Melanoma. Juxtapapillary                           | 12 |
| Figure (10): Dome-shaped choroidal melanoma                              | 13 |
| Figure (11): Color photograph of a dome-shaped choroidal melanoma        | 13 |
| Figure (12): Transpupillary photograph of post choroidal melanoma        | 13 |
| Figure (13): Skin metastasis of a posterior choroidal melanoma           | 24 |
| Figure (14): Choroidal nevus                                             | 29 |
| Figure (15): Choroidal nevus with drusen                                 | 29 |
| Figure (16): Choroidal hemangioma in a juxtafoveal position              | 31 |
| Figure (17): Choroidal osteoma, peripapillary                            | 34 |
| Figure (18): Choroidal osteoma, with scalloped edges                     | 34 |
| Figure (19): Choroidal metastasis. Thyroid cancer origin                 | 35 |
| Figure (20): Choroidal metastasis. Wilm's tumor origin                   | 35 |
| Figure (21): Choroidal melanoma with orange pigment                      | 40 |
| Figure (22): Choroidal melanoma with orange pigment                      | 40 |
| Figure (23): Choroidal melanoma, amelanotic (non-pigmented)              | 40 |
| Figure (24): Choroidal melanoma, exudative retinal detachment            | 41 |
| Figure (25): Choroidal melanoma, broken through Bruch's membrane         | 41 |
| Figure (26): A collar-button shaped choroidal melanoma                   | 42 |
| Figure (27): A dome-shaped choroidal melanoma                            | 42 |
| Figure (28): A-scan ultrasound of choroidal melanoma                     | 44 |
| Figure (29): B-scan ultrasound of posterior choroidal melanoma           | 44 |
| Figure (30): Ultrasound of a collar-button shaped choroidal melanoma     | 45 |
| Figure (31): Ultrasound of dome-shaped choroidal melanoma                | 45 |
| Figure (32): Choroidal Melanoma Left, a slit lamp photograph             | 45 |
| Figure (33): Ultrasound of a collar-button shaped choroidal melanoma     | 46 |
| Figure (34): Ultrasound of a mushroom shaped choroidal melanoma          | 46 |
| Figure (35): Ultrasound of a dome shaped choroidal melanoma              | 46 |
| Figure (36): Ultrasound of a dome shaped choroidal melanoma              | 46 |
| Figure (37): Ultrasound of intra-orbital extension of choroidal melanoma | 47 |
| Figure (38): Ultrasound of extrascleral extension of choroidal melanoma  | 47 |
| Figure (39): Ultrasound of a mushroom shaped choroidal melanoma          | 47 |

| Figure (40): Early fluorescein angiogram of choroidal melanoma   | 49         |
|------------------------------------------------------------------|------------|
| Figure (41): Late fluorescein angiogram of choroidal melanoma    | 49         |
| Figure (42): Metastatic choroidal melanoma, Total body PET/CT    | 52         |
| Figure (43): MRI of small anterior choroidal melanoma            | 56         |
| Figure (44): MRI of extrascleral extension of choroidal melanoma | 56         |
| Figure (45): MRI of extrascleral extension of choroidal melanoma | 56         |
| Figure (46): Choroidal Nevus                                     | 69         |
| Figure (47): Choroidal Nevus                                     | 69         |
| Figure (48): Choroidal Nevus                                     | 69         |
| Figure (49): Choroidal Nevus                                     | 70         |
| Figure (50): Choroidal Nevus                                     | 70         |
| Figure (51): Choroidal Nevus                                     | <b>7</b> 1 |
| Figure (52): Choroidal Nevus                                     | 71         |
| Figure (53): Choroidal Nevus                                     | 71         |
| Figure (54): Ultrasound scan of choroidal haemangioma            | 73         |
| Figure (55): Ultrasound scan of choroidal haemangioma            | 73         |
| Figure (56): Ultrasound scan of choroidal haemangioma            | 74         |
| Figure (57): Fluorescein angiogram of choroidal haemangioma      | 74         |
| Figure (58): Ultrasound scan of choroidal osteoma                | 76         |
| Figure (59): Fluorescein angiogram of choroidal osteoma          | 76         |
| Figure (60): Ultrasound scan of choroidal metastases             | 78         |
| Figure (61): Ultrasound scan of choroidal metastases             | 78         |
| Figure (62): Fluorescein angiogram of choroidal metastases       | 79         |
| Figure (63): Fluorescein angiogram of choroidal metastases       | 79         |
| Figure (64): Choroidal nevus treated with observation            | 84         |
| Figure (65): Ophthalmic plaques                                  | 88         |
| Figure (66): Ophthalmic plaques                                  | 88         |
| Figure (67): Ophthalmic plaques                                  | 88         |
| Figure (68): Ophthalmic plaques                                  | 89         |
| Figure (69): Ophthalmic plaques                                  | 89         |
| Figure (70): Insertion of an ophthalmic plaque                   | 90         |
| Figure (71): Graphic demonstrates of an ophthalmic plaque        | 91         |
| Figure (72): Graphic demonstrates of an ophthalmic plaque        | 91         |
| Figure (73): Graphic demonstrates of an ophthalmic plaque        | 91         |
| Figure (74): Choroidal melanoma treated with pallidum            | 100        |
| Figure (75): Choroidal melanoma treated with pallidum            | 100        |
| Figure (76): Radiation optic neuropathy                          | 100        |
| Figure (77): Cystoid macular edema induced by radiotherapy       | 101        |
| Figure (78): cataract induced by radiotherapy                    | 101        |
| Figure (79): Neovascularization induced by radiotherapy          | 101        |
| Figure (80): Radiation neuropathy                                | 102        |
| Figure (81): Radiation neuronathy                                | 102        |

| Figure (82): Radiation neuropathy                                  | 102 |
|--------------------------------------------------------------------|-----|
| Figure (83): Scleral necrosis after radiotherapy                   | 102 |
| Figure (84): Dry eye after radiotherapy                            | 105 |
| Figure (85): Histologic section of an enucleated eye               | 130 |
| Figure (86): Histologic section of an enucleated eye               | 130 |
| Figure (87): Enucleated eye                                        | 131 |
| Figure (88): Enucleation with implant looking left                 | 131 |
| Figure (89): Exenterated orbit                                     | 132 |
| Figure (90): Choroidal metastasis after external beam radiotherapy | 153 |
| Figure (91): Interferon retinopathy                                | 153 |
|                                                                    |     |

### Anatomy of the choroid

The choroid is a thin brownish membrane composed of blood vessels, melanocytes and connective tissue. It extends from the optic disc to the ora serrata forming the posterior part of the uveal tract. It is thicker at the posterior pole (0.2 - 0.3 mm) than in the periphery (0.1 - 0.15 mm). The choroid has racial variations being darker in pigmented races; while the choroidal vessels are easily seen in the white races. There is a potential space between the choroid and inner sclera termed suprachoroidal space (*Easty & Sparrow*; 1999).

The choroid has four microscopic layers; lamina suprachoroidea (lamina Fusca), stroma containing vessels, chorio-capillaries and Bruch's membrane. Lamina suprachoroidal (lamina Fusca) is composed of closely packed lamellae that consist of delicate mesh of collagen fibres. These lamellae adjoin potential space which becomes evident when the suprachoroid is pathologically distended by serous fluid or blood. They are more adherent to each other and to the sclera posteriorly. Hence, detachments of the choroid takes place anteriorly and rarely pass behind the equator. The suprachoroidal space is traversed by the long and short ciliary arteries and nerves which supply the uveal tract (*Bron et al; 1997*).

The stroma consists of an outer large vessel layer (Mailer's) and medium vessel layer (Sattler's). Arteries in Mailer's layer have an internal elastic lamina and smooth muscle media while the Sattler's layer shows many interlinked and intertwined vessels that lack fenestrations. There are inter-arteriolar and intervenous anastomoses particularly at the posterior

pole. Choroid arterioles supply the chorio-capillaries, but are not truly endarteries because of these anastomoses. In addition to vessels; the stromal layer contains nerves, cells and connective tissue. The stromal cells include melanocytes, fibrocytes, macrophages, mast cells and plasma cells (*Easty & Sparrow; 1999*).

Melanocytes give the stroma its brown colour. Their numbers vary regionally with age and race; they are most numerous around the optic disc, less so in the periphery and predominate around vessels. They have no nucleoli but rich in melanosomes that contain fine and oval pigment granules, yellowish to dark brown in colour. Size of pigment granules is constant in any individual or cell but varies from race to race. Fibrocytes processes intermingle with those of the melanocytes. They are most dense in the outer choroid, and are more numerous in males. The collagen fibres of the stroma encircle vessels to provide an adventitia (Yanof & Fine; 1996).

The layer of the chorio-capillaries consists of wide diameter capillaries; present internal to the arterioles and venules of Sattler's layer and external to Bruch's membrane. The chorio-capillaries are thin walled and have many fenestrations on the retinal aspect. Electron microscopy has failed to show the existence of any capillary muscular sphincter, unlike capillary beds elsewhere in the body. They are flattened antero-posteriorly providing a large surface area for unimpeded metabolic exchange across Bruch's membrane (*Easty & Sparrow*; 1999).

Bruch's membrane (Lamina vitrea) is a thin, acellular, well-delineated zone lying between the retina and choroid. It is thickest near the

disc (2-4 µm) and is an integral part of the choroid anatomically. Bruch's membrane has five layers on electron microscopy; basement membrane of retinal pigment epithelium, inner collagenaus zone, middle elastic zone, outer collagenous zone and basement membrane of the chorio-capillaries (*Easty & Sparrow; 1999*).

Blood supply of the choroid arises from posterior ciliary branches of the ophthalmic artery and is separate from the retinal circulation. The short ciliary arteries, after piercing the sclera, are at first in the suprachoroid surrounded by pigmented tissue. They proceed forwards in a sinuous manner and gradually penetrate the choroid. They bifurcate dichotomously and eventually divide into the chorio-capillaries, the capillary bed of the choroid extending from optic disc margin to the ora serrate. The arteries are less sinuous than the veins. Branches from the short posterior ciliary arteries, lying in the center (Haller's) layer, give rise to the choroidal arterioles of the intermediate layer (of Sattler). The anterior part of the choroid is either supplied by the recurrent ciliary arteries which arise in the ciliary body from circulus iridis major or from the long posterior and anterior ciliary arteries before they join the muscular circles. The venous drainage of the entire choroid is by vortex veins that subsequently drain in the superior and inferior orbital veins which exit the orbit through the superior and inferior orbital fissures (Bron et al; 1997).

Nearly twenty short posterior ciliary nerves innervate the choroid. They originate from the ciliary ganglion and pierce the posterior sclera 3 to 4 mm from the optic nerves to enter the suprachoroidal space, where they lose their myelination. Extensive plexuses exist in the suprachoroid and choroid. Axons terminate in the subcapillary layer and not in the chorio-

capillaries. They provide sensory, motor, and sympathetic fibres. The two long posterior ciliary nerves innervate the anterior part of the choroid, but are largely providing the sympathetic supply to the dilator pupillae. Blood flow through the choroid is under autonomic control, via sympathetic fibres of the short posterior ciliary nerves (*Bron et al; 1997*).

The main function of the choroid is to supply the outer layer of the retina with blood and nutrients. It is also thought that blood flow in the choroidal arteries assists in regulating intraocular pressure. It might be noted that epithelial cells act as a barrier controlling the movements of choroidal tissue fluid into the retina. The large number of pigment cells in the choroid absorbs excess light that penetrate the retina, thus preventing reflection (*Easty & Sparrow*; 1999).

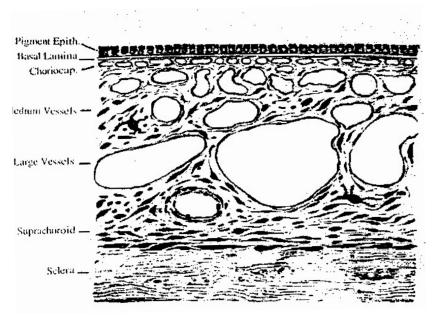



Figure (1): Section in the choroid

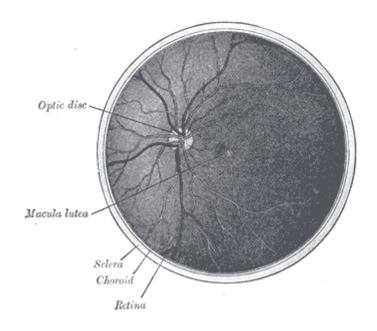



Figure (2): Interior of the eye