

The Role of Aberrant Promoter Methylation in Chronic Liver Patients and Hepatocellular Carcinoma Patients

Thesis submitted to Biochemistry Department
Faculty of Science
Ain Shams University
In partial fulfillment of the requirements for the degree of
Master of Science

by Fatma El-Zahraa Aly Sayed

Supervised by

Prof. Dr./ Fahmy T.Ali

Dr./ Gilane M.Sabry

Professor of Biochemistry Faculty of Science Ain Shams University Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr./Abdel Rahman N. Zekri

Professor and Head of Molecular Virology & Immunology Department National Cancer Institute Cairo University

(2013)

دور ميثلة البادئ الضال في مرضي الالتهاب الكبدي المزمن و سرطان الكبد

رسالة مقدمة الى قسم الكيمياء الحيوية- كلية العلوم- جامعة عين شمس كجزء متمم للحصول على درجة الماجستير في الكيمياء الحيوية من

الطالبة / فاطمة الزهراء علي سيد محمد (بكالوريوس علوم- الكيمياء الحيوية و الكيمياء) (2002)

تحت إشراف

أ.د./ جيلان محمد صبري

أستاذ الكيمياء الحيوية قسم الكيمياء الحيوية كلية العلوم جامعة عين شمس

أ.د./ فهمي توفيق علي

أستاذ الكيمياء الحيوية المتفرغ قسم الكيمياء الحيوية كالمينية العاصوم جامعة عين شمس

أ.د./عبد الرحمن نبوي ذكري

أستاذ ورئيس وحدة الفيروسات والمناعة المعهد القومي للأورام جامعة القاهرة

(2013)

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the few tumors in which the incidence is on the rise worldwide. The increasing incidence of HCC is associated with the rise in hepatitis C virus (HCV) infection. Egypt has the highest prevalence of HCV/genotype 4 infection in the world, with 14% of the population infected. Little is known about the role(s) of epigenetic changes that may participate in HCV-induced HCC. Epigenetic studies directed at mapping the etiology of HCV disease progression to HCC and how they correlate with patients clinicopathological parameters are expected to provide new insights that will aid in the design of effective strategies for earlier detection and management of the disease. The aim of the current study was to investigate the aberrant methylation of 11 genes in liver tissue samples obtained from Egyptian patients infected with HCV/genotype 4, and to explore possible relationships between aberrant methylation and clinicopathological features in HCC. Thirty-one HCC and matching nontumor tissues, thirty-four chronic hepatitis liver tissues, and thirteen normal liver tissues were analyzed for the methylation status of APC, FHIT, p15, p73, p14, p16, DAPK1, CDH1, RARβ, RASSF1A and O⁶MGMT genes by qualitative methylation-specific PCR. Based on methylation profiles, a methylation of only 7 genes was found to be highly significant, which is dependent on disease state. Our data indicate that DNA methylation may serve as a marker for HCV-associated HCC, and demonstrate the importance of considering the clinicopathological variables as predicators of disease state.

ACKNOWLEDGMENT

First of all, I should thank "Allah", The most Gracious, The most Beneficial and the most Merciful for his help and guidance in my whole life and throughout this study.

I would like to express my sincere appreciation and deepest gratitude to **Prof. Dr. Fahmy T. Ali,** Professor of Biochemistry, Faculty of Science, Ain Shams University, the person who gave me the honor by reading every word written in this thesis. I thank him for his perpetual support and guidance, fruitful discussion and profound reviewing of the results and discussion of the manuscript.

Deep thanks are also due to **Dr. Gilane M. Sabry,** Professor of Biochemistry, Faculty of Science, Ain Shams University, for her kind, sincere, valuable instructions, careful reading and unlimited advisement, encouragement and criticism throughout the whole work.

I am also grateful to **Prof. Dr. Abdel Rahman N. Zekri,** Professor and Head of Molecular Virology and Immunology Department, National Cancer Institute, Cairo University, for suggesting the point of the study providing the laboratory facilities necessary for the experimental work and his continuous help and encouragement.

Special thanks are also due to my Family for their encouragement.

CONTENTS

	Page
Abbreviations	i
List of Figures	iii
List of Tables	X
Abstract	
Introduction	1
Aim of The Work	7
Review of Literature	7
Subjects and Methods	64
A-SUBJECTS	
Study Design	65
Specimens collection	65
B-METHODS	
1-Quantitative Determination of Aminotransferases (AST) and (ALT)	67
2-Quantitative Determination of Serum Alkaline Phosphatase	68
3-Quantitative Determination of Serum Bilirubin	69
4-Quantitative Determination of Serum Albumin	70
5- Detection of Serum Hepatitis B Surface Antigen	71
6-Detection of Serum Hepatitis B Virus using Polymerase Chain Reaction	74
7-Detection of Serum Hepatitis C Virus Antibody	76
8-Quantitative Determination of Viral RNA	79
9-Detection of Promoter Methylation	88
Results	107
Discussion	177
Summary	215
References	219
Boster	
Arabic Summary	253

ABBREVIATIONS

i

AAIR	Age-adjusted Incidence Rate
5- aza-cdR	5- aza- deoxycytidine
AASLD	American Association for the Study of Liver Disease
AFP	Alpha-fetoprotein
AFP-L3	Lectin-bound Alpha fetoprotein
AML	Acute Myelogenous Leukaemia
APC	Adenomatosis Polyposis Coli
ARF	Alternative Reading Frame
CAH	Chronic Active Hepatitis
CDH	E-Cadherin
CDKN2a	Cyclin- Dependent Kinase INhibitor 2a
СН	Chronic Hepatitis
CLL	Chronic Lymphocytic Leukaemia
CML	Chronic Myelogenous Leukaemia
CpG	Cytosine phosphate Guanine
CRP	Chromatin Remodeling Protein
CT	Computed Tomography Scan
DAPK	Death-Associated Protein Kinase
DHF	Dihydrofolate
DN	Dysplastic Nodules
DNMT	DNA methyltransferase
ECM	Extra Cellular Matrix Components
ER	Endoplasmic Reticulum
FAP	Family Adenomatous Polyposis
FHIT	Fragile Histidine Triad
HATs	Histone Acetyltransferases
HDACs	Histone Deacetylases
HMTs	Histone Methyltransferases
HP	Heterochromatin Protein
HVR	Hypervariable region
IDU	Injection Drug use
IFN_α	Interferon-α
INK4a	INhibitor of Cyclin dependent kinase 4a

Abbreviations ii

MBD	Methyl CpG binding Domain
MDM2	Murine Double Minute 2
MeCP	Methyl CpG binding Protein
MGMT	Methyl guanine DNA- Methyltransferase
miRNAs	Micro ribonucleic Acids
MRI	Magnetic Resonance Imaging
MS	Methionine Synthase
MS-PCR	Methylation specific Polymerase Chain Reaction
MTHFR	Methylene Tetrahydrofolate reductase
MTs-1	Major Tumor suppressor-1
NAFLD	Non-Alcoholic Fatty Liver Disease
NASH	Non-alcoholic Steatohepatitis
NS	Non-Structural
NSCLC	Non-Small Cell Lung Cancer
NTR	Non-Translated Region
ORF	Open Reading Frame
RARβ	Retinoic Acid Receptor beta
RASSF1A	RAS association domain Family1 isoform A
RT-PCR	Real Time Polymerase Chain Reaction
SAH	S- adenosylhomocysteine
SAM	S- adenosylmethionine
TAE	Tris Acetate EDTA
TDG	Thymine DNA Glycosylase
THF	Tetrahydrofolate
TMB	Tetramethyl benzidine
TSGs	Tumor Suppressor Genes
UDG	Uracil DNA Glycosylase
UMP	Uridine monophosphate

List of Figures

Figure		page
1	Proposed mechanism of hepatocarcinogenesis related to	3
	hepatitis B virus (HBV) and hepatitis C virus (HCV).	3
2	Molecular pathways involved in HCC tumorigenesis.	4
3	The stages of liver damage.	7
4	Global variation in liver cancer incidence rates.	8
5	Hepatitis B coinfection in patients with hepatitis C	13
	seems to contribute heavily to HCC development.	
6	Risk factors for HCC and different pathways of	14
	pathogenesis	
7	Overview of outcome of HBV infection.	15
8	Nucleotide positions corresponding to the HCV strain	17
	H77genotype 1a.	
9	The structure of the HCV genome.	18
10	Evolutionary tree of the principal genotypes of HCV.	19
11	Schematic diagram of the HCV life cycle.	20
12	Sources of acute hepatitis C infection by geographic	21
	region	
13	Postulated scheme of liver damage occurred by alcohol,	26
	HCV infection, and obesity and insulin resistant.	
14	Schematic of epigenetic modifications. DNA	28
	methylation occurs at 5-position of cytosine residues.	
15	Schematic of the reversible changes in chromatin	28
	organization that influence gene expression.	
16	Carriers of epigenetic information: DNA and nucleosome.	31
1-		22
17	miRNA Processing and Activity.	32
18	Knudson's two-hit hypothesis revised.	33

19	Impact of epigenetic and genetic alterations induced by environmental, dietary and lifestyle factors in cancer.	35
20	Structures of methylated bases occurring in DNA.	36
21	Methylation of cytosine within CpG dinucleotides is catalyzed by DNMTs.	36
22	Inheritance of DNA methylation status.	38
23	The metabolic interactions underlying the importance of folate 1-carbon groups for both DNA synthesis and DNA methylation.	40
24	Maintenance (A) and <i>de novo</i> DNMTs (B) methylated DNA.	41
25	Members of mammalian DNMTs family.	42
26	Schematic representation of the biochemical pathways for cytosine methylation, demethylation, and mutagenesis of cytosine and 5-methylcytosine.	44
27	Methylation level of K4, K9 and K27 amino acid residues of H3 histone.	46
28	DNA methylation, histone modification, and chromatin remodeling are involved in gene inactivation by silencing transcription.	46
29	Genomic analysis of DNA methylation	48
30	Enzymes and reactions involved in the establishment of DNA methylation patterns.	50
31	Summary of some known partners and pathways of RASSF1A.	58
32A	How de novo hypermethylation of CpG islands in the promoters of DNA-repair genes can lead to their inactivation.	61
32B	Hypermethylation of the promoter of MGMT leads to increased $G \rightarrow A$ mutations	61
33	Structures of (A) 5-aza-2'-deoxycytidine (5-aza-dC, decitabine) and (B) zebularine.	63
34	Percentage change of TLC, HB, and PLT between patient and control groups.	110

35	Percentage change of ALT, AST, T-Bilirubin, Alb and	112
	ALP between patient and control groups.	112
36	Percentage methylation of methylated APC gene in	115
	normal tissue in control and patients groups.	110
37	Percentage unmethylation of unmethylated APC gene	115
	in normal tissue in control and patients groups.	113
	Percentage methylation of methylated APC gene in	
38	tumor tissue in chronic hepatitis and hepatocellular	116
	carcinoma groups.	
	Percentage unmethylation of unmethylated APC gene	
39	in tumor tissue in chronic hepatitis and hepatocellular	116
	carcinoma groups.	
40	MS-PCR products of methylated APC gene on agarose	117
40	gel electrophoresis.	117
	MS-PCR products of unmethylated APC gene on	
41	ı ı	117
	agarose gel electrophoresis. Percentage methylation of methylated FHIT gene in	
42		120
	normal tissue in control and patients groups. Percentage unmethylation of unmethylated FHIT gene	
43	in normal tissue in control and patients groups.	120
	Percentage methylation of methylated FHIT gene in	
44	tumor tissue in chronic hepatitis and hepatocellular	121
		121
	carcinoma groups. Percentage unmethylation of unmethylated FHIT gene	
45	in tumor tissue in chronic hepatitis and hepatocellular	121
		121
	carcinoma groups. MS-PCR products of methylated FHIT gene on agarose	
46	gel electrophoresis.	122
	MS-PCR products of unmethylated FHIT gene on	
47	agarose gel electrophoresis.	122
	Percentage methylation of methylated P15 gene in	
48	normal tissue in control and patients groups.	125
	Percentage unmethylation of unmethylated P15 gene in	
49		125
	normal tissue in control and patients groups.	

	Percentage methylation of methylated P15 gene in	
50	tumor tissue in chronic hepatitis and hepatocellular	126
	carcinoma groups.	
	Percentage unmethylation of unmethylated P15 gene in	
51	tumor tissue in chronic hepatitis and hepatocellular	126
	carcinoma groups.	
52	MS-PCR products of methylated P15 on agarose gel	127
32	electrophoresis.	12/
53	MS-PCR products of unmethylated P15 on agarose gel	127
33	electrophoresis.	12/
54	Percentage methylation of methylated P73 gene in	130
34	normal tissue in control and patients groups.	150
55	Percentage unmethylation of unmethylated P73 gene in	130
33	normal tissue in control and patients groups.	150
	Percentage methylation of methylated P73 gene in	
56	tumor tissue in chronic hepatitis and hepatocellular	131
	carcinoma groups.	
	Percentage unmethylation of unmethylated P73 gene in	
57	tumor tissue in chronic hepatitis and hepatocellular	131
	carcinoma groups.	
58	MS-PCR products of methylated P73 on agarose gel	132
30	electrophoresis.	102
59	MS-PCR products of unmethylated P73 gene on	132
	agarose gel electrophoresis.	102
60	Percentage methylation of methylated P14 gene in	135
	normal tissue in control and patients groups	103
61	Percentage unmethylation of unmethylated P14 gene in	135
01	normal tissue in control and patients groups.	100
	Percentage methylation of methylated P14 gene in	
62	tumor tissue in chronic hepatitis and hepatocellular	136
	carcinoma groups.	
	Percentage unmethylation of unmethylated P14 gene in	
63	tumor tissue in chronic hepatitis and hepatocellular	136
	carcinoma groups.	

64	MS-PCR products methylated P14 gene on agarose gel electrophoresis.	137
65	MS-PCR products of unmethylated P14 gene on agarose gel electrophoresis.	137
66	Percentage methylation of methylated P16 gene in normal tissue in control and patients groups.	140
67	Percentage unmethylation of unmethylated P16 gene in normal tissue in control and patients groups.	140
68	Percentage methylation of methylated P16 gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	141
69	Percentage unmethylation of unmethylated P16 gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	141
70	MS-PCR products of methylated P16 on agarose gel electrophoresis.	142
71	MS-PCR products of unmethylated P16 gene on agarose gel electrophoresis.	142
72	Percentage methylation of methylated DAP-Kinase gene in normal tissue in control and patients groups.	145
73	Percentage unmethylation of unmethylated DAP- Kinase gene in normal tissue in control and patients groups.	145
74	Percentage methylation of methylated DAP-Kinase gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	146
75	Percentage unmethylation of unmethylated DAP- Kinase gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	146
76	MS-PCR products of methylated DAP-Kinase gene on agarose gel electrophoresis.	147
77	MS-PCR products of unmethylated DAP-Kinase on agarose gel electrophoresis.	147
78	Percentage methylation of methylated RAR beta gene in normal tissue in control and patients groups.	150

List of Figures viii

79	Percentage unmethylation of unmethylated RAR beta gene in normal tissue in control and patients groups.	150
80	Percentage methylation of methylated RAR beta gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	151
81	Percentage unmethylation of unmethylated RAR beta gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	151
82	MS-PCR products of methylated RAR beta gene on agarose gel electrophoresis.	152
83	MS-PCR product of unmethylated RAR beta gene on agarose gel electrophoresis.	152
84	Percentage methylation of methylated RASSF1A gene in normal tissue in control and patients groups.	155
85	Percentage unmethylation of unmethylated RASSF1A gene in normal tissue in control and patients groups.	155
86	Percentage methylation of methylated RASSF1A gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	156
87	Percentage unmethylation of unmethylated RASSF1A gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	156
88	MS-PCR products of methylated RASSF1A gene on agarose gel electrophoresis.	157
89	MS-PCR products of unmethylated RASSF1A gene on agarose gel electrophoresis.	157
90	Percentage methylation of methylated O ⁶ MGMT gene in normal tissue in control and patients groups.	160
91	Percentage unmethylation of unmethylated O ⁶ MGMT gene in normal tissue in control and patients groups.	160
92	Percentage methylation of methylated O ⁶ MGMT gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	161

93	Percentage unmethylation of unmethylated O ⁶ MGMT gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	161
94	MS-PCR products of methylated O ⁶ MGMT gene on agarose gel electrophoresis.	162
95	MS-PCR products of unmethylated O ⁶ MGMT gene on agarose gel electrophoresis.	162
96	Percentage methylation of methylated E-cadherin gene in normal tissue in control and patients groups.	165
97	Percentage unmethylation of unmethylated E-cadherin gene in normal tissue in control and patients groups.	165
98	Percentage methylation of methylated E-cadherin gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	166
99	Percentage unmethylation of unmethylated E-cadherin gene in tumor tissue in chronic hepatitis and hepatocellular carcinoma groups.	166
100	MS-PCR products of methylated E-cadherin gene on agarose gel electrophoresis.	167
101	MS-PCR products of unmethylated E-cadherin gene on agarose gel electrophoresis.	167