

STRESS FIELD VARIATIONS AND SEISMOTECTONICS OF EGYPT

BY
SHIMAA HOSNY ABD EL-HAFEZ HOSNY
EL-KHOLY
B. Sc.

A THESIS SUBMITTED FOR MASTER DEGREE

IN GEOPHYSICS

GEOPHYSICS DEPARTMENT FACULTY OF SCIENCE AIN SHAMS UNIVERSITY CAIRO, EGYPT.

2010

SUPERVISORS

PROF. DR. MAHDY M. A. ABDEL RAHMAN

Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

PROF. DR. AHMED ALY BADAWY

Professor of Seismology, Manager of National Data Center (NDC), National Research Institute of Astronomy And Geophysics (NRIAG), Helwan, Egypt

DR. ABDEL KHALEK EL-WERR

Associate Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University

Shimaa Hosny Abd El-Hafez Hosny El-Kholy {Stress Field Variations And Seismotectonic of Egypt} Master Degree, Ain Shams University –Faculty of ScienceGeophysics Department 2010

ABSTRACT

The present study attempts to delineate seismotectonics situation of Egypt from earthquakes distribution and source mechanism estimation. To reach these goals, we relocated the entire events recorded by ENSN seismic Network during the period from(1997-2007) by using SEISAN program to get a comprehensive view of seismicity. Moreover, we have determined the mechanisms of 87 events using both polarity and amplitude ratio of SV/P. The Egyptian Territory has been classified into 9 geographic zones based on different kind of mechanisms. For each zone we have determined the stress regime by inversion of earthquake source mechanisms.

The results indicate that normal faulting movements with strike slip component characterize the majority of the earthquake focal mechanisms. The obtained results are highly consistent with the previous work. The analysis of earthquake mechanisms suggests that the present day stress field in Northern Egypt is dominated by normal faulting with strike- slip component. Southern Egypt is dominated by pure strike- slip stress regime. Gulf of Aqaba is dominated by normal faulting with strike- slip regime. North Gulf of Suez is characterized by normal faulting with strike- slip regime

while South Gulf of Suez is dominated by normal faulting regime due to the opening of rift towards the south. Eastern Desert is revealed by strike slip with normal component However Western Desert reveal pure normal faulting regime with minor strike-slip component. The orientation of P-axes reflects that the maximum horizontal stress (σ_H) in Southern Egypt is aligned to nearly E-W direction while in Northern Egypt it is aligned with mix of NW-SE and nearly E-W compression.

Key words: Stress regime, Focal mechanism, Egypt.

LIST OF CONTENTS

Subj	ect	Page No.
LIST	Γ OF CONTENTS	I
LIST OF FIGURES.		III
LIST	Γ OF TABLES	VI
ABS	TRACT	VII
CHA	APTER ONE: INTRODUCTION	1
CHA	APTER TWO: GEOLOGIC AND TECTOR	NIC
	SETTING OF EGYPT	
2.1	Introduction	4
2.2	The Red Sea Rift	15
2.3	Gulf of Suez and Gulf of Aqaba	16
2.4	Nile Delta	20
2.5	Eastern Desert	21
2.6	Western Desert	21
2.7	Sinai Peninsula	22
2.8	Aswan	25
CHA	APTER THREE: SEISMICITY OF EGYPT	Γ
3.1	Introduction	27

3.1.1	Historical Seismicity	31
3.1.2	Instrumental Seismicity	32
3.2	Data Set and Method of analysis	36
3.2.1	Earthquake Relocation	36
3.2.2	Earthquake Focal Mechanisms	38
CHA	PTER FOUR: STRESS FIELD INVE	RSIONS
4.1	Introduction	45
4.2	Stress Tensor Inversion	46
4.3	Stress Indicators	47
CHAI	PTER FIVE: CONCLUSIONS	56
REFE	RENCES	65
APPEN	NDEXES	A1
ARAB	IC SUMMARY	

LIST OF FIGURES

Fig. No	Subject	Page No.
2.1	Location map of Egypt	5
2.2	Surface Linaments and major faults of H	Egypt
	(After EGSMA, 1984)	5
2.3	Geologic map of Egypt	
	(After El Shazly, 1977)	6
2.4	The major tectonic segments of Egypt	
	(After El Shazly, 1977)	8
2.5	The main structural elements of Egypt	
	(After Youssef, 1968)	9
2.6	Major tectonic elements affecting the	
	northern part of Egypt (After Bosworth	,
	et al., 1999)	12
2.7	Tectonic and accommodation zones in t	he
	Gulf of Suez (After Khalil, 1998)	18
2.8	Tectonic map of Sinai (After Szatmari,	
	et al., 1999)	23
3.1	The main seismic zones in Egypt	
	(After Kebeasy, 1990)	29

3.2	Historical earthquakes in Egypt for the	
	period from 84 B.C. to 1900 A.D. (After	
	Badawy, 1998)	31
3.3	Spatial distribution of small (3\le Ml\le 5) and	
	a) during 1900-1997 and b) during 1998-	
	2004	35
3.4	Location of studied earthquakes	
	(Before Relocation)	37
3.5	Re-Location of studied earthquakes	
	(After Relocation)	38
3.6	Fault plane solutions of studied earthquakes	5
	using polarities of P-wave first motion and	
	amplitude ratio of SV/P	42
4.1	The stress chart of Egypt	50
4.2	The stress chart of Northern Egypt	51
4.3	The stress chart of Southern Egypt	51
4.4	The stress chart of North Gulf of Suez	51
4.5	The stress chart of South Gulf of Suez	51
4.6	The stress chart of Gulf of Aqaba	52
4.7	The stress chart of Red Sea	52

4.8	The stress chart of Eastern Desert	52
4.9	The stress chart of Western Desert	52
4.10	The stress chart of Aswan	53
4.11	Stress map of Northern and Southern Egypt	54
4.12	Stress map of all zones of Egypt	55
5.1	Fault plane solutions of some earthquakes of	
	different authors	.59
5.2	Focal mechanisms of some earthquakes of	
	Nile Delta	60
5.3	Focal mechanisms of some earthquakes of	
	Gulf of Aqaba	61
5.4	Focal mechanisms of some earthquakes of	
	Gulf of Suez	62
5.5	Focal mechanisms of some earthquakes of	
	South Gulf of Suez	63

LIST OF TABLES

Table	No. Subject	Page No.
3.1	The earthquake parameters of Egypt	A1
3.2	The parameters of the focal mechanisms	
	(strike, dip and rake) of the two planes	
	for studied earthquakes of Egypt	B1
4.1	The parameters of stress of Egypt	
	(principle axes) plunge, azimuth of P- axe	es,
	T-axes and nodal planes of present	
	study	C1
4.2	The parameters of σ_1 , σ_2 & σ_3 of present	
	study of Egypt	D1
5.1	The parameters of σ_1 , σ_2 & σ_3 of present	
	study of all events and the parameters of	$\sigma_{_{\! 1}},$
	$\sigma_2 \& \sigma_3$ of previous work of all events	E1

ACKNOWLEDGEMENT

First of all, I thank Almighty God for helping and enabling me to complete this work.

I would like to express my thanks to *Prof. Dr. M.M. Abdel Rahman*, Geophysics Department, Faculty of Science, Ain Shams University, for his kind help and supervision of this thesis.

I would like to express my deepest gratitude and sincere thanks to *Prof. Dr. Ahmed Ali Badawy*, Manager of Egyptian National Data Center (ENDC) for his capable supervision, encouragement, continuous interest and deep discussion for all results.

I wish to express my deep gratitude *to Dr. Abd El khalek* for his supervision and encouragement for this study.

All my thanks to Prof. Dr. Hesham Hussein, Dr. Azza Abed, Dr. Enayat Awd, Dr. Soud Abd Elhady and Dr. Ali Gharib for their guidance and advice.

I would like to thanks all my staff colleges *Mr*. *Mohammed El Gabry, Ms. Hanan Mahmoud* and especially deepest thanks to *Mr. Sherif Mohamed Ali* for their encoueagement and assistance.

I would like to thanks my friends *Dr. Nabawia*Shabaan Khalifa, Azza El-rawy, Eman Farag, Eman

Habeb, Eman Abdel-Rahman, Doaa El-sayed and Mona

Abo Shady for their encoueagement and assistance

Finally, I would like to express my deepest gratitude to all my family My Father, My Mother, My sister and My husband for their encouragement and support in my work.

CHAPTER 1

INTRODUCTION

The present-day stress field in Egypt is a key element for understanding its seismotectonic situation. Seismotectonics of Egypt is dominated by the opening of the Red Sea, Gulf of Suez and Gulf of Aqaba. Moreover Sinai Subplate plays an essential role in this complex situation. The convergence of the African and Eurasian plates in the Eastern Mediterranean represents the older tectonic framework.

Local variations in stress orientations and relative magnitudes exist at a variety of scales and may be due to several forces acting on the lithosphere (Forsyth and Uyeda, 1976; Richardson et al., 1979; Zoback, 1992; Badawy, 1996; Badawy and Horvath, 1999a). The status of stress in the lithosphere is controlled by local forces (stress concentration due to structure heterogeneity, crustal loading and asthenosphere thermal anomalies) and regional more uniform forces directly related to the plate motion and interaction (ridge- push, viscous shear force at the asthenosphere-lithosphere boundary, continental collision).

The information on relative stress magnitudes or stress regime could be inferred from earthquake focal mechanisms and institustress measurements.

The stress tensor is defined using standard notation with compressive stress when $\sigma_1 > \sigma_2 > \sigma_3$.

Anderson (1951) defined three stress regimes on the basis of relative stress magnitudes:

- 1) Extensional stress regime ($\sigma_v = \sigma_1$) corresponding to normal dip slip fault.
- 2) Strike- Slip regime ($\sigma_v = \sigma_2$) corresponding to faulting with horizontal slip.
- 3) Thrust faulting regime ($\sigma_v = \sigma_3$) corresponding to reverse dip slip faulting.

The stress field can be transitional between the above regimes if two of the stresses are approximately equal in magnitude.

A stress field of the form $\sigma_{\nu} = \sigma_1 > \sigma_3$ can produce a combination of both normal and strike-slip faulting whereas a stress field of the form $\sigma_1 > \sigma_{\nu} = \sigma_3$ produce a combination of strike slip and thrust faulting.

The World Stress Map (WSM) project provided unique database on the orientation and relative magnitudes of the stress field in the Earth's lithosphere (**Zoback**, **1992**). This project has provided a large amount of crustal stress data for many regions all-over the world. Therefore the purpose of this study aims to reconstruct the recent stress field in Egypt to understand the stress acting within the plate and to compare the shallow and deep crustal stress orientations

on the basis of new analysis of borehole breakouts and earthquake focal mechanisms.

The present study attempts to delineate the seismotectonic situation of Egypt from distributions and source mechanism estimation of some recent earthquakes. To reach this goals, we relocated the entire events from (1997-2007), establishing the mechanisms and deriving stress regimes.

This thesis consists of the following chapters:

- Reviewing the geology, structure and tectonics of Egypt (Chapter two).
- 2) Studying the historical seismicity, instrumental seismicity and relocating the earthquakes during the period from 1997 to 2007. Inaddition, we have determined the mechanisms of these events depending on the polarity of the first P- wave arrivals and the amplitude ratio SV/P by using Seisan program (Chapter three).
- 3) Estimating the stress parameters of these events during the period from 1997 to 2007 by using triangle program (Chapter four).
- 4) The discussion and conclusions of the study are presented in (Chapter five).