Electrical Safety in The Operating Theatre

An Essay
Submitted For Partial Fulfillment of Master Degree In
Anaesthesiology

By **Rafik Samir Wasfy Nagib Migally**(M.B.B.CH)

Under Supervision Of

Prof. Dr. Nermin Sadek Nasr

Professor of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Dr. Khaled Hassan Saad

Assistant Professor of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Dr. Neveen Girgis Fahmy

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2010

List of Contents

	Page
Acknowledgment	
List of Abbreviations	ii
List of Figures	V
List of Tables	vii
Introduction	1
Chapter 1: Overview of electricity in the operation theatre.	ng 2
Chapter 2: Electrical equipments in the operating theatre.	17
Chapter 3: Prevention & management of electrical	al
hazards	61
Chapter 4 :Other hazards in the operating theatre.	82
English summary	102
References.	104
Arabic summary	

List of Abbreviations

°C Celsius

μA Microamperμm MicrometerA Amper

AC Alternating current

AEDs Automated External Defibrillators

AEM Active Electrode Monitoring **AHA** American Heart Association

AICD Automated Implanted Cardioverter-defibrillator

AIDS Acquired Immunodeficiency Syndrome
ANSI American National Standards Institute
ASA American Society of Anesthesiologists

BTE Biphasic truncated waveform CEM CUSA Electrosurgery Module

CO Cardiac Output CO2 Carbon dioxide

CPR Cardiopulmonary resuscitation

CRT Cardiac Resynchronization Therapy

CUSA Ultrasonic Surgical Aspirator Standard System

CVP Central venous pressure

DC Direct currentECG Electrocardiogram

EEG electroencephalographic

ELISA Enzyme-linked immunosorbent assay

EMS Emergency medical services

ESIS Electrical Surgical Interference Supression

ESU Electrosurgical Unit

ESWL Extracorporeal Shock-Wave Lithotripsy

GFCI Ground Fault Current Interrupter

HBV Hepatitis B Virus **HCV** Hepatitis C Virus

HIV Human Immunodeficiency Virus

HPV Human Papillomavirus

Hz Hertz

List of Abbreviations (Cont.)

I The current

ICD Implantable cardioverter-defibrillator

IV Intravenous

J Joules

JCAHO Joint Commission on Accreditation of Healthcare

Organization

kHz Kilohertz

Laser Light Amplification by Stimulated Emission of Radiation

LCD Liquid-Crystal Display LIM Line Isolation Monitor

mA milliAmper

MAP Mean arterial pressure

MHz MicroHertz

MIS Minimally Invasive Surgery

ml/min milliliter per minute

mm millimeter
mrem millirems

MRI Magnetic Resonance Imaging

mV milliVolt

Nd-YAG Neodymium-yttrium-aluminiumgarnet **NFPA** National Fire Protection Association

NIOSH National Institute for Occupational Safety and Health

O.R. Operating Room

OSHA Occupational Safety and Health Administration

P Power

PACU Post Anaesthesia Care Unit

PCI percutaneous injury

PEP Post-Exposure Prophylaxis

PPM Parts Per Million

PVC Premature Ventricular Contraction

R Resistance

REM Return Electrode Monitoring **Rem** roentgen equivalents man

RF Radio Frequency

List of Abbreviations (Cont.)

RMS Root-mean-square average

SA Sinoatrial

SARS Severe Acute Respiratory Syndrome

SVR Systemic vascular resistance

TENS Transcutaneous Electrical Nerve Stimulation

TJC The Joint Commission

UK United Kingdom

V Voltage difference, VoltVF Ventricular Fibrillation

List of Figures

Figure	Title	Page
1	Basic structure of an atom	2
2	The original source of electricity	4
3	Current as a function of time for direct current,	6
	alternating current and a combination of the two.	
4	The response to electric current flowing	7
_	through an arm let go current, RMS (root-	-
	mean-square average)	
5	The hot, neutral and ground leads	10
6	Ground connects to chassis	11
7	Power supply to the hospital and the position	11
	of the anaesthetist in completing the circuit	
	between the live wire and earth	
8	Risk of electrocution of a patient in contact	12
	with earthed equipment	
9	Increased risk to an anaesthetist wearing	12
	nonstandard footwear in a pool of saline	
10	Risk of microshock	14
11	Anaesthetist as a potential earthing point for	16
	the patient	
12	Class 1 equipment: principle of earthing of the	18
	metal case of apparatus and the use of a fuse	
13	Principle of electrosurgical equipment	23
14	Principle of the surgical diathermy system.	25
	A. Unipolar diathermy B. Bipolar diathermy.	
15	Electrosurgical generators and production of a	26
	variety of electrical waveforms	
16	Principle of a laser system	30
17	LigaSure generator and hand pieces	36
18	Harmonic Focus	41
19	Harmonic Wave	41

List of Figures (Cont.)

Figure	Title	Page
20	Harmonic ACE	42
21	CUSA	43
22	View of defibrillator position and placement,	45
	using hands free electrodes.	
23	The sinoatrial node is the natural cardiac	50
	pacemaker	
24	The artificial pacemaker	51
25	Cross-Section of a Chest With a Pacemaker	54
26	Monitor	57
27	Insulation Failure	60
28	Capacitive Coupling	60
29	Schematic diagrams of an isolation transformer	67
30	Interference of pacemaker from an external	73
	electromagnetic field	
31	Alternate site burn	75
32	Flow of electric current through the body when	76
	small-area or large-area grounding pads are	
	used	
33	Sites of patient return electrode	77

List of Tables

Table	Title	Page
	Average effects on humans of 60-Hz (Hertz) currents applied at body surface and passing through the trunk	
2	Equipment and Patient-circuit Classification	20

Abstract

Since safety practices are important to emphasize, this essay will cover some of the electrical hazards in the operating room and discuss what might be done to eliminate these hazards. Static electricity can be a source of ignition in anaesthetic explosion (Paul & Gavin, 2003).

Macroshock refers to disturbances in neural or muscular function, or both, caused by the application of high voltage or current. Problems can arise if macroshocks occur near the heart, as in a fatal case when a patient's ECG (electrocardiogram) leads were accidentally attached to a power cord. However, macroshock can also cause injury if contact is made at locations remote from the heart.

Microshock is a risk in patients with intracardiac conductors, such as external pacemaker electrodes or saline filled catheters, within the heart. A current as low as 10 MicroAmpers directly through the heart, may send a patient directly into ventricular fibrillation (**Gross, 2005**).

The anaesthetist is in daily contact with a large amount of equipments which are powered by mains supply electricity. Some of these equipments are: diathermy, laser, Ligasure, Harmonic, defibrillator, pacemaker, monitoring equipment and laparoscopy.

The anaesthetist must be familiar with the operating controls and the ways in which the apparatus may malfunction or, if a recording instrument, gives rise to artefacts. These equipments are classified according to the means of protection they provide against electric shock arising from contract with the mains electricity supply. There are three classes for electromedical equipment, class I, class II and class III (Graham Smith et al., 2001).

The risk of electric shock can be greatly reduced if equipment is constructed and maintained to a suitable standard. The electrical hazards include electrical ground which means intentionally connecting the power source to earth ground. The electrical power to the home is grounded but to O.R is usually ungrounded, the electrical equipment is usually grounded. Isolated power system is another strategy for ensuring safety against electrical hazards. It has been accomplished by means of isolation transformers (Wills et al., 2010).

It is impossible to practice anesthesia without exposure to a number of potentially harmful environmental factors. Exposure to inhalation agents, transmissible diseases, and radiation are unavoidable in the operating room environment. Fortunately, the past several decades have produced a number of technical advancements and guidelines that serve to minimize the adverse effects of these occupational exposures. Efficient gas scavenger systems, needle-less systems, protect intravenous and post-exposure prophylaxis protocols are now commonplace in contemporary anesthesia practice. But while these measures all serve to minimize occupational exposure and risk, they do not completely eliminate them.

Protection against accidental fires and explosions in the operating room is done by isolation of fire triad. Tremendous care should be given for implementation of the protocols to deal with evacuation of the operating room, how to deal with the anesthetized patient and when to leave the operating room (**Dorre and William**, 2007).

In addition to environmental exposures, the access to potent opioids, the tradition of extended work hours, and the unique role the anesthesiologist plays in critical clinical situations contribute to the anesthesiologist's risk of chemical dependence, fatigue, and emotional distress (Litt, 2005).

- Dorre N and William P., Environmental Safety Including Chemical Dependency, of Miller's Anesthesia, Seventh Edition, Ronald D. Miller, MD, Lars I. Eriksson, MD, PHD, Lee A. Fleisher, MD, Jeanine P. Wiener-Kronish, MD, William L. Young, MD, Section IX, chapter 101,pages 7-15, 2007.
- Graham Smith, Alan R Aitkenhead, David J Rowbotham, 4th edition, BASIC PHYSICS FOR THE ANAESTHETIST, Vol 1 chapter 30, pages 347 352, 2001.
- Gross J Less Jolts from Your Volts: Electrical Safety in the Operating Room. ASA Refresher Courses in Anesthesiology. Chapter 33 pages 101-114, 2005.
- Litt L. Electrical Safety in the Operating Room. In: Miller's Anesthesia. Miller RD ed. 6th Ed. Churchill livingston; pages 3139-3147,2005.
- Paul D David and Gavin N C Kenny, Parbrook 5th edition, Electricity chapter 14 pages 149 163, Electrical safety chapter 16 pages 181 182, 2003.
- Wills JH, Ehrenwerth J, Rogers D. Electrical injury to a nurse due to conductive fluid in an operating room designated as a dry location. Anesth Analg; chapter 110 pages 1647–9, 2010.

Acknowledgement

irst, thanks are all due to **God** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

I am deeply grateful to **Prof. Dr. Nermin Sadek Nasr,** Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams university for sponsoring this work, her keen supervision, great help, available advises, continuous encouragement and without her support it was impossible for this study to be achieved in this form. I had the privilege to benefit from her great knowledge, and it is an honor to work under her guidance and supervision.

I am also greatly indebted to Dr. Khaled Hassan Saad Assistant professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain-Shams University, for his great supervision, great help and continuous encouragement.

I would like to direct my special thanks to Dr. Neveen Girgis Fahmy, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her invaluable help, fruitful advice, continuous support offered to me and guidance step by step till this essay finished.

I want also to direct my great thanks to my family (Father, Mother and Sister) and my wife for supporting me throughout my life.

Rafik Samir Wasfy Nagib Migally

INTRODUCTION

Since safety practices are important to emphasize, this essay will cover some of the electrical hazards in the operating room and discuss what might be done to eliminate these hazards.

Static electricity can be a source of ignition in anaesthetic explosion.

It is important to study the heat production with increased current which is utilized in fuses, as well to study the electrical burns and its hazards.

Electrosurgical equipments depend on the concept of current density which controls the heating effect of these equipments.

Studying the electrical concepts of defibrillators, pace makers, electrocardiograms, electromyograms, and electroencephalograms are mandatory to maximize patient safety (Paul & Gavin, 2003,A).

Electrical safety in the operating theatre is often regarded as being of historical interest only. The reality is that the theatre environment is becoming more electrically complex by the year (**Graham Smith et al., 2001**).

It is important to study as well the regulations (as NAVY regulations) to prevent electrical mishaps in the operation theatre (**Vlessides**, **1997**).

As well studying the correct methods of installation and location of electrical equipments is important to prevent sparks or high temperature (**Dorsche and Dorsche**, **1994**).

Overview of Electricity in The Operating Theatre

Static Electricity and Electrical Potential:

he word electricity is derived from electron, the Greece word of amber. In amber as well as all substances, the atoms consist of a positively charged nucleus surrounded by negatively charged electrons (Figure 1). Rubbing amber against another material may lead to a transfer of electrons, so that one of the substances will have an excess of them and the other a deficit. This phenomenon is known as static electricity which can be a source of ignition in anaesthetic explosions. It may also occur with other substances e.g. plastics and rubber.

The electrons in the substances with the excess then possess potential energy in the same manner that the height of an object determines its gravitational potential energy. This is known as the electric potential difference between the subject with the excess and that with the deficit (Paul & Gavin, 2003.A).

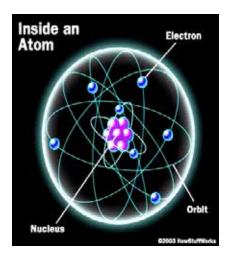


Figure 1: Basic structure of an atom

Properties of Electricity:

CURRENT = Flow of electrons during a period of time,

measured in amperes

CIRCUIT = Pathway for the uninterrupted flow of

electrons

VOLTAGE = Force pushing current through the

resistance, measured in volts

RESISTANCE = Obstacle to the flow of current, measured in

ohms (impedance = resistance)

Several properties of electricity must be understood in order to understand electrosurgery. Electrons orbit the nuclei of atoms. Current flow occurs when electrons flow from one atom to the orbit of an adjacent atom. Voltage is the "force" or "push" that provides electrons with the ability to travel from atom to atom. If electrons encounter resistance, heat will be produced. The resistance to electron flow is called impedance.

A completed circuit must be present in order for electrons to flow. A completed circuit is an intact pathway through which electrons can travel. In (figure 2), voltage is generated by the power company, providing the force to push electrons through the circuit. The original source of these electrons is the earth (ground). To complete the circuit the electrons must return to ground. Any grounded object can complete the circuit - allowing the electrons to flow to ground (Graham Smith et al., 2001).