

Ain Shams University Faculty of Education Physics Department

# Study of Structural and Mechanical Properties of Al-5356 Solder Alloy

#### **Thesis**

Submitted for the Degree of Doctor of Philosophy for the Teacher's Preparation in Science (Physics)

## By **Essam Mohammed Nassr El Den**

B.Sc. and Education (2000), Gen. Diploma (Physics) (2001), Spec. Diploma (Physics) (2002) and M. Sc (Physics) (2006)

To
Physics Department
Faculty of Education
Ain Shams University

2010

#### $\widehat{\circ})$

#### **Approval Sheet**

**Title** : Study of Structural and Mechanical Properties of

Al-5356 Solder Alloy

Candidate: Essam Mohamed Nassr El Den Abd El hak

**Degree**: Doctor of Philosophy Degree for the Teacher's

Preparation in Science (Physics).

#### **Board of Advisors**

Approved by Signature

#### 1. Prof. Dr. Gamal Saad Awadalla

Physics Department, Faculty of Education,

Ain Shams University.

#### 2. Prof. Dr. Sanaa Ahmed Fayek Hassan

Physics Department, National Center for Radiation Research and Technology.

#### 3. Prof. Dr. Adel Fawzy Ibrahim

Physics Department, Faculty of Education,

Ain Shams University.

#### 4. Dr. Hany Nazmy Soliman

Physics Department, Faculty of Education,

Ain Shams University.

Date of presentation / / 2010

### <u>Post graduate studies :</u>

Stamp: / / Date of approval: / /

Approval of Faculty Council: / /2010

Approval of University Council: / / 2010



Ain Shams University Faculty of Education Physics Department

#### **Thesis Title**

Study of Structural and Mechanical Properties of Al-5356 Solder Alloy

#### **Researcher Name**

**Essam Mohammed Nassr El Den** 

### Supervised by

- 1. Prof. Dr. Gamal Saad Awadalla
- 2. Prof. Dr. Sanaa Ahmed Fayek Hassan
- 3. Prof. Dr. Adel Fawzy Ibrahim
- 4. Dr. Hany Nazmy Soliman

#### **ABSTRACT**

Name : Essam Mohammed Nassr El Den

**Title** : Study of Structural and Mechanical Properties

of Al-5356 Solder Alloy

**Submitted to**: Physics Department, Faculty of Education, Ain

Shams University.

The present work is devoted to investigate:

(1) The effect of grain diameter and deformation temperature on the stress-strain characteristics of Al-5356 wire samples under constant strain rate (S.R) of  $1.5 \times 10^{-3}$  s<sup>-1</sup>.

- (2) The effect of ageing time on the stress-strain characteristics of Al-5356 wire samples strained at different deformation temperatures ranging from 303 to 523 K under constant strain rate of  $1.5 \times 10^{-3}$  s<sup>-1</sup>.
- (3) The effect of  $\gamma$ -irradiation with different doses (D) ranging from 500 to 2000 kGy on the stress-strain characteristics of Al-5356 samples strained by strain rate of  $1.5 \times 10^{-3}$  s<sup>-1</sup>at different deformation temperatures (T<sub>w</sub>).
- (4) The structural changes accompanying both grain growth and ageing processes using optical and scanning electron microscopy (SEM) in addition to the energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) investigations.

#### **ABSTRACT**

In view of the microstructure and subsequently the stress-strain parameters variation, the obtained results showed that:

- a) Increasing grain diameter of the tested sample resulted in decreasing the work-hardening parameters (WHP) yield stress  $\sigma_y$ , fracture stress  $\sigma_f$ , total strain  $\epsilon_T$  and work-hardening coefficient  $\chi_p$ .
- b) Serration amplitude was found to be inversely proportional to the increase in grain diameter.
- c) The total strain  $\varepsilon_T$  decreased with increasing the grain diameter while increasing the deformation temperature exhibited minimum value at 348K.
- d) The WHPs  $\sigma_y$ ,  $\sigma_f$  and  $\chi_p$  increased with increasing the ageing time, while  $\epsilon_T$  decreased.
- e) The WHPs  $\sigma_y$ ,  $\sigma_f$  and  $\chi_p$  increased with increasing the irradiation dose D, while  $\epsilon_T$  decreased.
- f) The Deformation temperature exhibited a reverse effect of  $\gamma$ -irradiation.

#### **ACKNOWLEDGEMENT**

The author is greatly indebted to **Prof. Dr/ Madiha Fadel Abd-El Aal**, Head of Physics Department, Faculty of Education, Ain Shams University, for her continuous support.

I would like to express my deep gratitude to **Prof. Dr/ Gamal Saad Awadalla**, Physics Dpt., Faculty of Education, Ain Shams University, for suggesting this work and for his continual support, moral encouragement, and relentless efforts to make this work come to life.

Grateful thanks to **Prof. Dr/ Sanaa Ahmed Fayek,** Physics Dpt., National Center for Radiation Research and Technology, for her kind help and suggesting the part of radiation included in this work.

Sincere appreciation to **Prof. Dr/ Adel Fawzy**, Physics Dpt., Faculty of Education, Ain Shams University, for his continual support, help and valuable discussions through the present work.

Thanks are also extended to **Dr/ Hany Nazmy Soliman**, Physics Dpt., Faculty of Education, Ain Shams University, for his kind help and valuable discussions throughout the progress of this work.

This work has been performed in the laboratory of "Solid State Physics", Faculty of Education, Ain Shams University, and I would like to express deep thanks to my colleagues at the laboratory for the experimental facilities they have provided. Also many thanks for the staff of National Center for Radiation Research and Technology for providing many experimental facilities.

|             |                                        | Page |
|-------------|----------------------------------------|------|
| Acknowle    | dgement                                |      |
| List of Fig | gures                                  | i    |
| List of Equ | uations                                | viii |
| Abstract    |                                        | ix   |
| Summary     |                                        | xi   |
| Published   | Papers                                 | XV   |
| Acceptanc   | e Letters                              | xvi  |
|             | CHAPTER I INTRODUCTION                 |      |
| 1.1         | Defects in Crystalline Solid Materials | 1    |
| 1. 1. 1     | Point Defects                          | 1    |
| 1. 1. 2     | Line Defects or Dislocations           | 1    |
| 1. 1. 3     | Planar Defects                         | 2    |
| 1. 1. 4     | Volume Defects                         | 2    |
| 1. 2        | Work Hardening of Metals and Alloys    | 3    |
| 1.3         | Stress-Strain Characteristics          | 4    |
| 1.4         | Mechanical Properties                  | 6    |
| 1.4.1       | Elastic Modulus (Young's Modulus), E   | 6    |
| 1.4.2       | Yield Strength ( $\sigma_y$ )          | 6    |
| 1.4.3       | Tensile Strength ( $\sigma_u$ )        | 7    |

|            |                                                  | Page |
|------------|--------------------------------------------------|------|
| 1.4.4      | Ductility                                        | 7    |
| 1.5        | Factors Affecting Flow Stress                    | 8    |
| 1. 5. 1    | Effect of Strain Rate                            | 8    |
| 1. 5. 2    | Effect of Temperature                            | 9    |
| 1. 5. 3    | Combined Effect of Strain Rate and Temperature   | 10   |
| 1. 5. 4    | Effect of Grain Size                             | 10   |
| 1.6        | Precipitation in Binary Systems                  | 12   |
| 1.7        | Diffusion in Solid Solutions                     | 13   |
| 1.8        | Aluminum Alloys                                  | 13   |
| 1. 8. 1    | Al-Mg Alloys                                     | 16   |
| 1. 8. 1. 1 | Mechanical Properties                            | 17   |
| 1. 8. 1. 2 | Corrosion Properties                             | 18   |
| 1. 8. 1. 3 | Weldability                                      | 19   |
| 1.9        | Deformation Discontinuities in Aluminum          | 19   |
|            | Alloys and the Portevin-Le Châtelier (PLC)       |      |
|            | Effect                                           |      |
| 1. 9. 1    | The Regime of Occurrence of the PLC Effect       | 21   |
| 1. 9. 2    | Strain Rate Sensitivity (SRS) and the PLC Effect | 22   |
| 1. 9. 3    | The PLC Effect in Al-Mg Alloys                   | 22   |
| 1. 9. 4    | The Dynamic Strain Ageing (DSA) and its          | 23   |
|            | Effect on the Mechanical Properties              |      |
| 1. 10      | Effect of Radiation on the Crystal Lattice       | 24   |
| 1. 10. 1   | The Radiation Damage Event                       | 24   |
| 1 10 2     | Physical Effects of Radiation Damage             | 25   |

|                |                                                   | Page |
|----------------|---------------------------------------------------|------|
| 1. 10. 2. 1    | Radiation-Induced Segregation                     | 25   |
| 1. 10. 2. 2    | Dislocation Microstructure                        | 26   |
| 1. 10. 2. 3    | Irradiation-Induced Voids and Bubbles             | 26   |
| 1. 10. 2. 4    | Phase Stability Under Irradiation                 | 27   |
| 1. 10. 3       | Mechanical Effects of Radiation Damage            | 28   |
| 1. 10. 3. 1    | Irradiation Hardening and Deformation             | 28   |
| 1. 10. 3. 1.   | l Irradiation Hardening                           | 30   |
| 1. 10. 3. 1. 2 | 2 Deformation in Irradiated Metals                | 30   |
| 1. 11          | Literature Review                                 | 31   |
| 1. 12          | Aim of the Present Work                           | 43   |
| 1.13           | The Al-Mg System                                  | 44   |
|                | <u>CHAPTER II</u>                                 |      |
| EX             | EXPERIMENTAL TECHNIQUES AND DEVICES               |      |
| 2. 1           | Alloy Preparation                                 | 47   |
| 2. 2           | Heat Treatments                                   | 47   |
| 2. 2. 1        | Heat Treatment Required for Obtaining             | 48   |
|                | Samples with Different Grain Diameters            |      |
| 2. 2. 2        | Heat Treatment Required for Ageing the Samples    | 48   |
| 2. 2. 3        | Heat Treatment and Irradiation of Al-5356 Samples | 48   |
| 2. 3           | Stress-Strain Apparatus and Measurements          | 49   |
|                | Technique                                         |      |

|         |                                                      | Page |
|---------|------------------------------------------------------|------|
| 2. 3. 1 | Description of the Stress-Strain Testing Unit        | 49   |
| 2.3.2   | Stress-Strain Measurements Technique                 | 51   |
| 2.4     | Grain Diameter Measurements                          | 51   |
| 2.5     | X-ray Diffraction Measurements Technique             | 53   |
| 2.6     | Scanning Electron Microscopy (SEM) and Energy        | 55   |
|         | Dispersive Spectroscopy (EDS) Techniques             |      |
|         |                                                      |      |
|         |                                                      |      |
|         | <u>CHAPTER III</u>                                   |      |
|         | EXPERMENTAL RESULTS                                  |      |
|         |                                                      |      |
| 3. 1    | Effect of Grain Diameter and Deformation             | 58   |
|         | Temperature on the Stress-Strain Characteristics and |      |
|         | Serrated Flow of Al-5356 Alloy                       |      |
| 3. 1. 1 | Microstructure Investigations                        | 58   |
| 3. 1. 2 | Grain Diameter Dependence of the Work-Hardening      | 63   |
|         | Parameters                                           |      |
| 3. 1. 3 | Strain-Hardening Exponent                            | 69   |
| 3. 1. 4 | The Activation Energy (Q)                            | 75   |
| 3. 1. 5 | The Serration Characteristics                        | 77   |
| 3. 2    | Effect of Ageing Time and Deformation                | 91   |
|         | Temperature on the Stress-Strain Characteristics and |      |
|         | Serrated Flow of Al-5356 Alloy                       |      |
| 3. 2. 1 | Microstructure Investigations                        | 91   |

|         |                                                      | Page |
|---------|------------------------------------------------------|------|
| 3. 2. 2 | The Work-Hardening Parameters                        | 94   |
| 3. 2. 3 | The Activation Energy (Q)                            | 100  |
| 3.3     | Effect of Irradiation and Deformation Temperature    | 103  |
|         | on the Stress-Strain Characteristics and Serrated    |      |
|         | Flow of Al-5356 Alloy                                |      |
| 3. 3. 1 | The Work-Hardening Parameters                        | 107  |
| 3. 3. 2 | The Activation Energy (Q)                            | 112  |
|         |                                                      |      |
|         |                                                      |      |
|         | <u>CHAPTER IV</u>                                    |      |
|         | DISCUSSION                                           |      |
| 4. 1    | Effect of Crain Diameter and Deformation             | 115  |
| 4. 1    | Effect of Grain Diameter and Deformation             | 115  |
|         | Temperature on the Stress-Strain Characteristics and |      |
|         | Serrated Flow of Al-5356 Alloy                       |      |
| 4. 2    | Effect of Ageing Time and Deformation                | 120  |
|         | Temperature on the Stress-Strain Characteristics and |      |
|         | Serrated Flow of Al-5356 Alloy                       |      |
| 4. 3    | Effect of Irradiation and Deformation Temperature    | 123  |
|         | on the Stress-Strain Characteristics and Serrated    |      |
|         | Flow of Al-5356 Alloy                                |      |

|                | Page |
|----------------|------|
| Conclusions    | 126  |
| References     | 128  |
| Arabic Summary | j    |

### **List of Equation**

### **List of Equations**

|              |                                                                                                                                                           | Page |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (1.1)        | $\varepsilon_{\rm f} = (l_{\rm f} - l_{\rm o}) / l_{\rm o}$                                                                                               | 8    |
| (1.2)        | $\sigma_{\varepsilon,T} = C_1 \left( \dot{\varepsilon} \right)^m$                                                                                         | 8    |
| (1.3)        | $\sigma_{\varepsilon, \dot{\varepsilon}} = C_2 \exp(Q/RT)$                                                                                                | 9    |
| (1.4)        | $\sigma_{\varepsilon,\acute{\varepsilon}} = \text{const.}/T$                                                                                              | 10   |
| (1.5)        | $\sigma_{\varepsilon} = f(Z)$                                                                                                                             | 10   |
| <b>(1.6)</b> | $Z = \varepsilon \exp (\Delta H / RT)$                                                                                                                    | 10   |
| <b>(1.7)</b> | $\sigma_{\rm y} = \sigma_{\rm o} + {\rm k} {\rm d}^{-n'}$                                                                                                 | 10   |
| (1.8)        | $m = (\partial ln \ \sigma \ / \ \partial ln \ \acute{\epsilon})_{\epsilon,T} \approx (\Delta ln \ \sigma / \ \Delta ln \ \acute{\epsilon})_{\epsilon,T}$ | 22   |
| (1.9)        | $m_s = (\partial \sigma  /  \partial ln \; \acute{\epsilon})_{\epsilon,T} \approx (\Delta \; \sigma / \; \Delta ln \; \acute{\epsilon})_{\epsilon,T}$     | 22   |
| (3.1)        | $t = \lambda / B \cos \theta$                                                                                                                             | 63   |
| (3.2)        | $\partial \sigma_{y}/\partial d = (\partial \sigma_{y}/\partial d)_{o} + A \exp(-T_{w}/B)$                                                                | 69   |
| (3.3)        | $\sigma = \beta \ \epsilon^n$                                                                                                                             | 69   |
| (3.4)        | $\sigma_{y} = k \left[ \epsilon^{\cdot} \exp \left( Q/RT \right) \right]^{m}$                                                                             | 75   |
| (3.5)        | $\Delta \sigma_{\rm R} = A \exp(\epsilon/\alpha)$                                                                                                         | 79   |
| <b>(4.1)</b> | $\chi_{\rm p} = G^2  \mathrm{b} / 2  \pi^2  \mathrm{L}$                                                                                                   | 117  |

### **List of Figures**

| Figure            | Caption                                                                                                                                            | Page |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>Fig.</b> (1.1) | Typical stress-strain diagram for a ductile metal under tension.                                                                                   | 5    |
| Fig. (1.2)        | Effect of irradiation on the stress-strain behavior in (a) an austenitic (fcc) stainless steel and (b) a ferritic (bcc) steel.                     | 29   |
| Fig. (1.3)        | The equilibrium phase diagram of the Al-Mg system.                                                                                                 | 45   |
| <b>Fig.</b> (2.1) | Schematic diagram of the tensile testing machine.                                                                                                  | 50   |
| <b>Fig.</b> (2.2) | Electropolishing circuit.                                                                                                                          | 52   |
| Fig. (2.3)        | Jenavert with model MF-AKS photomicrograph equipment 24 x 36 automatic-2.                                                                          | 54   |
| Fig. (2.4)        | Scanning electron microscopy JEOL, JSM-5400.                                                                                                       | 56   |
| Fig. (3.1)        | Photomicrographs of Al-5356 alloy specimens annealed for 5h at: (a) 673 K (10μm); (b) 723 K (14μm); (c) 823 K (23μm).                              | 59   |
| Fig. (3.2)        | Scanning electromicrographs of Al-5356 alloy specimens annealed for 5h at: (a) 673 K (10 $\mu$ m); (b) 773 K (14 $\mu$ m); (c) 823 K (23 $\mu$ m). | 60   |
| Fig. (3.3)        | EDS for the Al-5356 alloy showing the existence of Al and Mg elements.                                                                             | 61   |
| Fig. (3.4)        | X-ray diffraction patterns of the Al-5356 alloy annealed for 5h at: (a) 673 K (10 $\mu$ m); (b) 773 K (14 $\mu$ m); (c) 823 K (23 $\mu$ m).        | 62   |

i

### **List of Figures**

| Figure      | Caption                                                                                                                                                                                                                   | Page |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Fig. (3.5)  | The grain diameter dependence of particle size in the Al-5356 alloy.                                                                                                                                                      | 64   |
| Fig. (3.6)  | Stress–strain curves of Al-5356 samples having different grain diameters tested at: (a) 303K; (b) 323K; (c) 348K; (d) 373K under constant strain rate of $1.5 \times 10^{-3} \text{ s}^{-1}$ .                            | 65   |
| Fig. (3.7)  | Grain diameter dependence of the work-hardening parameters: (a) $\sigma_y$ ; (b) $\sigma_f$ for samples tested at different deformation temperatures under constant strain rate of $1.5 \times 10^{-3}$ s <sup>-1</sup> . | 67   |
| Fig. (3.8)  | The deformation temperature dependence of the total strain $\epsilon_T$ for Al-5356 samples having different grain diameters under constant strain rate of $1.5 \times 10^{-3}$ s $^{-1}$ .                               | 68   |
| Fig. (3.9)  | $\sigma^2$ - $\epsilon$ relation for Al-5356 samples having different grain diameters tested at different deformation temperatures under constant strain rate of 1.5x10 <sup>-3</sup> s <sup>-1</sup> .                   | 70   |
| Fig. (3.10) | Grain diameter dependence of the work-hardening coefficient $\chi_p$ for Al-5356 samples tested at different deformation temperatures under constant strain rate of $1.5 \times 10^{-3} \text{ s}^{-1}$ .                 | 71   |
| Fig. (3.11) | Dependence of the rate of change of: (a) $\sigma_y$ ;<br>(b) $\sigma_f$ ; (c) $\chi_p$ with grain diameter on the deformation temperature $T_{yy}$ .                                                                      | 72   |