Update on the role of immunology in Inflammatory Neuropathies

Essay submitted for partial fulfillment of master Degree in Neuropsychiatry

Presented by:

Hebat-Allah Reda Mohamed Abd ElMageed Rashed (M.B., B.Ch.)

Supervised by:

Prof. Samia Ashour Mohamed Helal

Professor of Neurology Faculty of Medicine - Ain Shams University

Prof. Nevine Medhat El-Nahas

Professor of Neurology Faculty of Medicine - Ain Shams University

Dr. Ahmed Abd El-Moneim Gaber

Assistant Professor of Neurology Faculty of medicine - Ain Shams University

Faculty of Medicine
Ain - Shams University
2010

ACKNOWLEDGEMENT

First and before all, I thank ALLAH. I thank him for his great mercy, generous blesses, and for his continuous gifts.

I would like to express my sincere thanks and gratitude to Professor Dr. Samya Ashour, the head of the department of neurology, Faculty of Medicine, Ain Shams University, who helped me a lot by continuous guidance and encouragement. She had the idea of this work and I owe here choosing me to do it.

I am greatly indebted to Professor Dr. Neveen El Nahas, Faculty of Medicine, Ain Shams University, who gave me valuable directions throughout the work. I was honored that she accepted the supervision of this work.

I would like to thank Dr. Ahmed Gaber, Assistant Professor of Neurology, Faculty of Medicine, Ain Shams University, For his meticulous supervision and support.

I would like to thank all my Senior staff, in the department of Neuropsychiatry, without them this work would not have been completed. To them I am eternally grateful. Also, I can not forget my colleagues, whom I spent with , a period of my life, was supposed to be a tedious and tiring, we made from these days, great memories , I will never forget.

Finally, my sincere thanks to my parents, who supported me a lot throughout my life.

Index

*Abbreviations	i
*Introduction	1
*Aim of the work	4
1)Overview	5
2)Anti-gangliosides in immune mediated neuropathies	10
-Glycosphingolipid structure and nomenclature	11
-Detection methods for gangliosides in tissues	15
-Ganglioside localization to specific nerve sites and fibre types	18
The Role of Complement Regulators and Therapeutic Inhibitors in Attenuating Nerve Injury	21
-Measurement of anti-glycolipid antibodies in serum	23
-Clinical syndromes associated with specific anti-glycolipid antibodies	24
-Therapeutic considerations	25
3)Acute immune neuropathies	28
-Guillan barre syndromes	28
-Immunolopathogenesis	31
-Ganglioside molecular mimicry	32
-Genetic predisposition of GBS	34
-Vaccines & GBS	36
-Acute inflammatory demyelinating polyneuropathy(AIDP)	38
-Acute motor axonal neuropathy(AMAN)	39
-Acute Motor Sensory Axonal Neuropathy	42
-Miller fisher syndrome and related conditions	43
- Glycolipid-mimicking structures identified on neuropathy-associated microorganisms	47
-Therapy	4 8
4)Chronic immune neuropathies	<i>53</i>
-Chronic immune neuropathies	53

-Chronic Inflammatory Demyelinating Polyneuropathy	53
(CIDP) -Immunopathogenesis	54
-Investigations	5 4
-Therapy	64
-Varients of CIDP	72
-Multifocal upper limb CIDP	72 72
-Sensory CIDP	72
-Pure motor CIDP	73
-Multifocal acquired demyelinating sensory and motor neuropathy (MADSAM)	73
-Multifocal acquired sensory and motor neuropathy (MASAM)	74
-Distal acquired demyelinating sensory neuropathy (DADS)	<i>75</i>
-CIDP + CNS features	<i>75</i>
-Concurrent diseases	76
-CIDP and Multiple Sclerosis:	76
-CIDP with diabetes (CIDP-DM)	76
-CIDP with other concurrent diseases	78
-Multifocal motor neuropathy (MMN)	79
-Anti-sulphatide neuropathy	84
-Anti-GM2 and GalNac-GD1a Neuropathy	<i>8</i> 5
-Dysglobulonomic neurpathies	<i>8</i> 5
-POEMS syndrome	86
-Mixed cryoglobulinemia	87
-GALOP syndrome	88
-Monoclonal gammopathy of undetermined significance (MGUS)	89
-Anti-MAG IgM paraproteinaemic neuropathy	91
-Waldenstrom's macroglobulinemia	92

-Paraneoplastic sensory neuropath	y
-Vasculitic neuropathy	
-Granulomatous neuropathies	
-Sarcoidosis	
-Leprosy	
-HIV associated neuropathies	
-HIV-1 Associated Distal	Painful Sensorimotor
Polyneuropathy -HIV Associated Acute/C	hnonia Inflammatom
-HIV Associated Acute/Control Demyelinating Polyneuropathy (AI)	J
-Drug-induced neuropathies	<i>D1</i> / C1 <i>D1</i> .)
-CMV-related	
5)Diabetic neuropathy	
-Pathogenesis of DN	
-Classification of DN	
-Investigations	
-Therapy	
*Discussion	
*Summery	
$*Conclusion \ \& Recommendations$	
*References	

Tables

Table	Name of the table	Page
Table 1	Clinical syndromes associated with specific anti-glycolipid	<i>24</i>
	antibodies	
Table 2	Host risk factors for GBS and related diseases	<i>35</i>
Table 3	Glycolipid-mimicking structures identified on neuropathy-	<i>47</i>
	associated microorganisms	
Table 4	Immunologic Differences Between TT and LL Leprosy	<i>98</i>

Figures

Figure	Name of the figure	page
Figure 1	Glycosphingolipid structure and nomenclature	12
Figure 2	Triggering agents in GBS	30
Figure 3	Immunopathogenesis	31
Figure 4	Ganglioside molecular mimicry	33

ABBREVIATIONS

Class of Evidence for Therapy	
Class	-High quality randomized controlled trials (RCTs).
I	
Class	-Prospective matched group cohort studies or randomized
II	controlled trials lacking adequate randomization
	concealment or blinding or potentially liable to attrition or
	outcome ascertainment bias.
Class	-Other studies such as natural history studies.
III	
Class	-Uncontrolled studies, case series or expert opinion.
IV	
_	Strength of the Recommendations
\boldsymbol{A}	-established as effective, ineffective, or harmful or as
	useful/predictive or not useful/predictive.
В	-Probably useful/predictive or not useful/predictive for the
	given condition in the specified population.
C	-Possibly effective, ineffective, or harmful or as
	useful/predictive or not useful/predictive.
$oldsymbol{U}$	-Data inadequate or conflicting. Treatment, test, or
	predictor unproven.

AGEs -Advanced Glycation End products

AIDP -Acute Inflammatory Demyelinating

Polyneuropathy

AIDS -Acquired Immunodeficiency Syndrome

AMAN -Acute Motor Axonal Neuropathy

AMSAN -Acute Motor and Sensory Axonal Neuropathy

APOE -Apolipoprotein E

AZT -Zidovudine

BBB -Blood-Brain Barrier

BNB -Blood-Nerve Barrier

BNF -Brain-derived Neurotrophic Factor

CANOMAD -Chronic Ataxic Neuropathy, Ophthalmoplegia,

IgM paraprotein, cold agglutinins and disialosyl

antibodies

CB -Conduction Block

CBZ -Carbamazepine

CD -Cluster of Differentiation

Cer -Ceramide

CIDP -Chronic Inflammatory Demyelinating

Polyneuropathy

CIDP-DM -Chronic Inflammatory Demyelinating

Polyneuropathy with Diabetes Mellitus

C.jejuni -Cambylobacter jejuni

CMV -Cytomegalovirus

CNS -Central Nervous System

CR -Complement Receptor

CSF -Cerebrospinal Fluid

DRG -Dorsal root ganglion

DADS -Distal Acquired Demyelinating Predominantly

Sensory

ddC -Zalcitabine

ddI -Didanosine

DN -Diabetic neuropathy

DRG -Dorsal root ganglion

EAN -Experimental Autoimmune Neuropathy

EFNS/PNS -European Federation of Neurological

Societies/Peripheral Nerve Society

EMG -Electromyography

Gal -Galactose

GalNAc -N-acetylgalactosamine

GBP -Gabapentin

GBS -Guillain-Barre syndrome

Ig -Immunoglobulin

GALOP -Gait Ataxia and Late Onset Neuropathy

GDNF -Glial cell line–derived neurotrophic factors

Glc -Glucose

GlcNAc -N-acetylglucosamine

GlcUA -Glucuronic acid

HAART -Highly Active Antiretroviral Therapy

Hex-LM1 -SLPG, Sialosyllactosaminylparagloboside

HIV -Human Immunodeficiency Virus

HLA -Human Leukocytic Antigen

HS -Heat Stable

IDDM -Insulin dependant diabetes mellitus

ILs -Interleukins

INCAT -International Neuropathy Cause and treatment

IVIg -Intavenous Immunoglobulin

LIF -Leukeamia Inhibitory Factor

LL -Lepromatous Leprosy

LM1 -SPG, sialosylparagloboside

LOS -Lipooligosaccharides

LPS -Lipopolysaccharides

LTG -Lamotrigine

MAC -Membrane Attack Complex

MASAM -Multifocal Axonal Sensory and Motor Neuropathy

MAG -Myelin-Associated Glycoprotein

MCV4 -quadrivalent Conjugated Meningococcal Vaccine

MDSAM -Acquired Demyelinating Sensory and Motor

MFS -Miller Fisher Syndrome

MMN -Multifocal Motor Neur

MMPs -Matrix Metalloproteinases

MRI -Magnetic Resonance Imaging

NeuNAc -N-acetylneuraminic acid

NCV -Nerve Conduction Velocity

NF -Neuclear Factor

NGF -Nerve Growth Factor

NMJ -Neuromuscular junction

NIDDM -Non Insulin Dependant Diabetes Mellitus

NISLL -Neuropathy Impairment Score in the Lower Limbs

OXC -Oxcarbazepine

PCR -Polymerase Chain Reaction

PE -Plasma Exchange

POEMS -Polyneuropathy, organomegaly, endocrinopathy or

edema, monoclonal protein, skin changes

PNS -Peripheral Nervous System

pSC -Perisynaptic Schwann cell

PSSD -Peripheral Specified Sensory Device

QST -Quantitative Sensory Testing

RAGEs -Receptors for Advanced Glycation End products

-Sulfated Glucuronyl Lactosaminyl Paragloboside

-Sulfated Glucuronyl Paragloboside

SNAP -Sensory Nerve Action Potentials

SNRI	-Serotonin-Noradrenaline Reuptake Inhibitors
DIVIX	-Scrotomin-Noraurchanne Reuptake ininionois

SOD3 -Superoxide Dismutases

SPG -Sialosylparagloboside

-Sympathetic Skin Response

SSRIs -Selective Serotonin Reuptake Inhibitors

SWM -Semmes-Weinstein Monofilaments

TCA -Tricyclic Antidepressants

TNF -Tumor Necrosing Factor

TST -Triple Stimulation Technique

TT -Tuberculoid Leprosy

US -United States

VEPs -Visual Evoked Potentials

VPT -Vibration Perception Threshold

INTRODUCTION

Peripheral neuropathy is a generic phrase denoting functional and /or pathological changes in peripheral nerves. The disorder varies in severity , but in some cases it can be crippling and , if vital organ function is affected , even fatal. it is often symmetric , but can be asymmetric (*Donofrio*, 2003).

Inflammatory neuropathies represent a heterogeneous spectrum of peripheral nerve disorders that can be classified according to time, course, predominant involvement of motor and sensory fibers, distribution of deficits and paraclinical parameters such as electrophysiology and serum antibodies (*Kieseier*, 2004).

The nature of the underlying mechanisms in inflammatory and immune-mediated neuropathies continues to represent an intensive area of research. It was found that 32-70% of all peripheral neuropathy are idiopathic, but with the development of autoimmune and genetic tests ,the cause of this idiopathic neuropathies can be identified and can be treated (*Kieseier*, 2004). Different auto-antibodies that are thought to cause specific neuropathic syndromes have been described. The involvement of T cells, cytokines, complement and class II molecules in the pathogenesis has also been studied. There is also intensive investigation into the area of immunotherapy, in particular in the

use of intravenous immunoglobulin (Ig) (Steck, 1992).

The prototypic immune-mediated peripheral neuropathy is the Guillain–Barre' syndrome (GBS), which is now recognized as a group of conditions with diverse pathology and pathogenesis (Hughes & Rees, 1997; Hahn, 1998). The therapeutic window for GBS is short, and the current optimal treatment with whole plasma exchange or intravenous immunoglobulin (Ig) therapy lacks immunological specificity and only halves the severity of the disease (Visser et al., 1999; Raphael et al., 2001; Hughes et al., 2004a; 2004b). Thus, there is an incentive to understand GBS pathogenesis as a prerequisite to developing and instituting effective, contemporary immunotherapies. Other dysimmune neuropathies can also be recognized such as, for instance, chronic inflammatory demyelinating polyneuropathy (CIDP), multifocal neuropathy (MMN) and nonsystemic vasculitic motor neuropathies (Hughes et al, 2008).

Immune mechanisms has been postulated also in other types of neuropathies as diabetic neuropathy. Diabetic neuropathy (DN) is the most common and troublesome complication of diabetes mellitus, leading to great morbidity and mortality. Epidemiologic data suggest that approximately 30% to 40% of people with type 2 diabetes have a distal peripheral neuropathy and is responsible for 50% to 75% of nontraumatic amputations

(*Holzer*, 1998; *Hink*, 2001). It now seems that the pathogenesis of diabetic neuropathy is heterogeneous. New therapies are aimed at the underlying pathogenesis as well as the symptom complex (*Guo*, 2001; *Hyllienmark* 1995). Electrophysiology, particularly conduction velocity alone, may provide a poor measure of early dysfunction in some patients, because there is little demyelination in the early stages (*Holland et al.*, 1997; *Lauria et al.*, 2007).

In practice, many of the autoimmune neuropathies are difficult to diagnose, due to a lack of generally accepted clinical diagnostic criteria, or availability of reliable serological tests. Consequently, many patients with autoimmune neuropathies are diagnosed as having "idiopathic neuropathy" instead, and left untreated despite progression of their disease (*Kieseier et al.*, 2004). In the last few years, significant advances in molecular immunology and biotechnology have been achieved in elucidating underlying pathomechanisms, which made it possible to identify potential therapeutic targets and selecting the correct strategies for novel therapeutic interventions and the management of patients with this class of disorders.