

Out-of-Step Detection using Phasor Measurement Units

By

Eng. Zeinab Gamal Hasan Moussa

A Thesis Submitted for the Requirement of the Degree of Master of Sciences in Electrical Power Engineering

Supervised by

Prof. Dr. Almoataz Youssef Abdelaziz
Dr. Amr Mohammed Ibrahim

Cairo 2013

Supervisors Committee

Name, Title and Affiliation

Signature

- 1. Prof. Dr. Almoataz Youssef Abdelaziz
 Electrical Power and Machines Department,
 Faculty of Engineering,
 Ain Shams University.
- 2. Dr. Amr Mohammed Ibrahim
 Electrical Power and Machines Department,
 Faculty of Engineering,
 Ain Shams University.

Examiners Committee

Name, Title and Affiliation

Signature

- Prof. Dr. Moussa Awadallah Abdallah Vice-Dean of Graduate Studies & Researches, Faculty of Engineering at Shoubra, Benha University, Egypt.
- 2. Prof. Dr. Salem Mahmoud Elkhodry
 Electrical Power and Machines Department,
 Faculty of Engineering,
 Ain Shams University.
- 3. Prof. Dr. Almoataz Youssef Abdelaziz
 Electrical Power and Machines Department
 Faculty of Engineering,
 Ain Shams University.

Statement

This dissertation is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of Master of Sciences in Electrical Engineering.

The work included in the thesis is carried out by the author at the department of Electrical Power and Machines, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Zeinab Gamal Hasan Moussa

Signature:

Date:

Acknowledgement

I would like to thank **Prof. Dr. Almoataz Youssef Abdelaziz**, one of my two thesis supervisors, for his valuable help in seeing this thesis through to its successful completion. Prof. Almoataz has always shown professionalism, dedication and enthusiasm. I am grateful for having had the opportunity to study and to work under his supervision. I would like to thank him for suggesting the research topic, helpful advices, patience, encouragement, reviewing the drafts of the thesis and the time he offered me during supervision.

Also, I would like to thank **Dr. Amr Mohammed Ibrahim**, my other thesis supervisor, for the guidance and advices during the research and for his continuous patience in reviewing the drafts during the preparation of this thesis.

To my parents, my brothers and my family, thanks a lot for your continuous support and encouragement during the research period. To my friend, Riham, your kindness and presence is always my motivation. Finally, to my fiancé, thank you is perhaps not enough. Your patience, support and encouragement have meant a lot to me. I could have not done this thesis without you.

Table of Contents

LIS	T OF ABBREVIATIONSVII
LIS	T OF SYMBOLSVIII
LIS	T OF TABLESIX
LIS	T OF FIGURESX
AB	STRACTXII
CH	APTER (1): INTRODUCTION1
1.1	Motivations1
1.2	Definition of the Problem2
1.3	Out-of-Step Detection Techniques
	1.3.2 Technique using Equal Area Criterion (EAC) in Power Angle (δ) Domain3
	1.3.3 Application of Fuzzy Logic and Neural Networks4
1.4	Thesis objective4
1.5	Main Contribution of the Thesis5
1.6	Thesis Outlines5
CH	APTER (2): LITERATURE SURVEY6
2.1	Transmission and Distribution Systems6
2.2	Faults
2.3	Power System Stability
	2.3.2 Out Of Step Condition11
	2.3.3 Oscillation in a Power System12

2.4	Stability	y Analysis	15
	2.4.1 S	ome Important Definitions	15
	2.4.2 Po	ower Transfer Equation	16
	2.4.3 P	ower Swing Equation	17
	2.4.4 TI	he Equal-Area Criterion	19
2.5		ectionelays	
	2.5.2 P	hasor Measurement Unit	22
	1.	Fundamentals of PMUs	23
	2.	Phasor Measurement Concepts	24
	3.	Synchrophasor Definition and Measurement	26
	4.	Applications of PMUs in Power System	27
	5.	Outlook of PMUs	29
	6.	The Global Positioning Satellite (GPS) Systems	30
	<i>7</i> .	The Comparison between SCADA System and PMUs System	32
2.6		ep Detection Methodselay Protection Schemes	
		ability Analysis for Relay Settings	
		ut-of-step relay basics	
		daptive relaying principles	
		rotection Schemes using Phasor Measurement Units	
2.7		chine system	
2.1		arallel Algorithms (PAs)	
	2.7.2 S	system Reduction	41
	1.	Eaual Area Criteria	41

	APTER (3): EVALUATION OF THE PROPOSED PROTECTION IEME FOR SMIB44
3.1	Power System Model44
3.2	Out of Step Detection Algorithm45
3.3	Simulation Results
	al
	3.3.3 Scheme responses to different faults55
	APTER (4): EVALUATION OF THE PROPOSED PROTECTION IEME FOR MULTI-MACHINE SYSTEM60
4.1	Out of Step Detection Algorithm for multi-machine system60
4.2 mode	Power system model of 3-machine 9-bus system depending on parallel algorithm
	4.2.2 Scheme responses to different faults67
	Power system model of 4-machine network depending on system reduction69 4.3.1 Simulation results of 3-phase short circuit using frequency-dependent el
	4.3.2 Scheme responses to different faults73
CHA	APTER (5): CONCLUSIONS AND FURTHER WORK75
5.1	Conclusions75
5.2	Future Work

REFERENCES	78
LIST OF PUBLICATIONS	89
APPENDIX A: DATA OF TEST SYSTEMS	90

List of Abbreviations

PMU Phasor Measurement Unit
GPS Global positioning system
DFT Discrete Fourier Transform
TDS Time Domain Simulation
EAC Equal-Area Criterion

SMIB Single Machine Infinite Bus SCV Swing Centre Voltage

NN Neural Network

TSA Transient Stability Assessment SVCs Static VAR Compensators EMS Energy Management System

SE State Estimator

WLS Weighted Least Square

DFRs Disturbance Fault Recorders
DSR Dynamic Swing Recorder

RMS Root Mean Square

SCADA Supervisory Control and Data Acquisition

PAs Parallel Algorithms

SMEB Single Machine to Equivalent Bus

LEB Load Equivalent Bus

List of Symbols

A Accelerating area
B Decelerating area

t_f Time of fault inception

D_f Duration of fault

 α_i Voltage angle of bus-j

 ρ_{ij} Angle of line admittance between bus-i and

bus-j

 ρ_{ii} Angle of self-admittance of bus-i from the bus

admittance matrix

 α_{eqi} Voltage angle of the equivalent artificial bus

connected to machine-i

 ρ_{eqi} Angle of line admittance connected to

machine-i

 V_i Voltage of bus-j

 Y_{ij} Magnitude of line admittance between bus-i

and bus-i

 Y_{ii} Magnitude of self-admittance of bus-i from the

bus admittance matrix

 V_{eqi} Voltage magnitude of the equivalent artificial

bus connected to machine-i

 Y_{eqi} Admittance magnitude of the equivalent

artificial bus connected to machine-i

List of Tables:

Table 2.1: Comparisons between SCADA and PMUs systems	32
Table 3.1: Simulated power system parameters	45
Table 3-2: Test results of the proposed scheme to different faults at different lo of the transmission line	
Table 3.3: Test results of the proposed scheme to faults at different fault inception and different fault durations	
Table 4.1: Test results of the proposed algorithm to number of faults at different durations using PAs	
Table 4.2: Test results of the proposed algorithm to number of faults at different durations using system reduction	
Table A.1: 3-Machine 9-Bus System Data	94

List of Figures

Figure 2.1: One machine against infinite bus diagram12
Figure 2.2: Input (dashed) and output (solid) power of a turbine-generator13
Figure 2.3: Power transfer before, during and after a fault close to the turbine- generator
Figure 2.4: Equal-area criterion with an acceleration area A and a decelerating area19
Figure 2.5: Meshed power system21
Figure 2.6: Phasor representation of a sinusoidal signal. (a) Sinusoidal signal. (b) Phasor representation24
Figure 2.7: Estimation of phasors from sampled data using Discrete Fourier Transform25
Figure 2.8: Recursive estimation of phasors from sampled data with moving window DFT
Figure 2.9: Compensating for signal delay introduced by the antialiasing filter27
Figure 2.10. Block diagram of the Phasor Measurement Unit30
Figure 2.11. PMU utilization in a power system31
Figure 2.12: Mho and offset mho characteristics33
Figure 2.13: Protection zones of a transmission line33
Figure 2.14: Different power swing protection schemes34
Figure 2.15: Traditional out-ofstep relay characteristics
Figure 3.1: Simulated power system model [13]44
Figure 3.2: Flowchart of algorithm46
Figure 3.3: Warning message when system has had a failure47
Figure 3.4: Warning message when system is about to lose synchronism48
Figure 3.5: voltage at generator bus49
Figure 3.6: voltage at infinite bus50
Figure 3.7: current at generator bus50
Figure 3.8: current at infinite bus50

Figure 3.9: rotor angle against time5
Figure 3.10: voltage at generator bus52
Figure 3.11: voltage at infinite bus53
Figure 3.12: current at generator bus53
Figure 3.13: current at infinite bus54
Figure 3.14: rotor angle against time54
Figure 4.1: Modeling of multi-machine system using PAs61
Figure 4.2: Modeling of multi-machine system using system reduction62
Figure 4.3: Flowchart of algorithm of multi-machine system62
Figure 4.4: The original network of the test system6
Figure 4.5: The transformed SMEBs used in PSCAD64
Figure 4.6: voltage of generator 26!
Figure 4.7: current of generator 26
Figure 4.8: voltage of generator 360
Figure 4.9: current of generator 360
Figure 4.10: rotor angle against time for a stable case
Figure 4.11: Four machine system69
Figure 4.12: Rotor angle movement for the 4 generators70
Figure 4.13: voltage of infinite bus72
Figure 4.14: voltage of generator72
Figure 4.15: current of infinite bus72
Figure 4.16: current of generator72
Figure 4.17: rotor angle against time for an unstable case73
Figure A.1: Data of 3-machine, 9-bus system; all impedances are in pu on a 100 MV/base93
Figure A.2:Data of Four machine power system9

Abstract

The electrical power systems have a huge interconnected network dispersed over a large area. A balance exist between generated and consumed power, any disturbance to this balance in the system caused due to change in load as well as faults and their clearance often results in electromechanical oscillations. As a result there is variation in power flow between two areas (accelerating area and decelerating area). This phenomenon is referred as Power Swing. This thesis presents a transmission line protection scheme that uses measured values of the currents and voltages of the three phases of two buses (equivalent to Phasor Measurement Unit (PMU) data). The measurement in time domain data is transformed into phasor domain using Discrete Fourier Transform to predict whether the swing is stable or not. The performance of the method has been tested on a simulated system using PSCAD and MATLAB software. The proposed scheme can be used for the detection of out of step condition using equalarea criterion with different types of faults at different locations and different models of transmission lines.

The scheme is developed to design power system transient stability assessment using direct methods of reduction for a multi-machine system. The multi-machine system is reduced to groups denoted as Single Machine to Equivalent Bus (SMEB) models and another groups denoted as Load Equivalent Bus (LEB) using Parallel Algorithms (PAs) or it is reduced to a single machine infinite bus (SMIB) system using system reduction. The proposed scheme can be used for the detection of out of step condition using an extension of the equal-area criterion. A three phase fault is simulated at different test systems for different durations.

This thesis deals with Out-Of-Step conditions in a network, how to detect the events and how to make improvements on the protection devices that are being used today. Power systems and stability analysis are studied in general and Out-Of-Step conditions are reviewed in detail.