Role of MR Spectroscopy in Fatty Liver

Essay

Submitted for Fulfillment of Master Degree in Radiodiagnosis

By

Sameh Essam Eldin Abd Elraziq
M.B., B.Ch.
Ain Shams University

Supervised By

Prof. Dr. Hanaa Abd Elkader Abd Elhamed

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Yousra Abd Elzaher Abdullah

Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2013

ACKNOWLEDGMENTS

First, and foremost, all thanks and gratitude to GOD, most gracious and most merciful.

I would like to express my deepest gratitude and sincere thanks to Prof. *Dr. Hanaa Abd Elkader*, Professor of Radiodiagnosis, Faculty of Medicine, Ain shams University for devoting much of her precious time, kind guidance and valuable advice for enriching this work.

I am extremely grateful to *Dr. Yousra Abd Elzaher*, Lecturer of Radiodiagnosis, Ain shams University for her continuous guidance and valuable suggestions, saving no effort or time to read every word in this work.

Lastly but not least, I would like to thank my dear parents, my Wife and my daughter for their constant support and encouragement and for providing me the environment needed for concentration and progress.

LIST OF CONTENTS

Introduction	3
Chapter One: Anatomy of the liver	13
Chapter Two: Pathogenesis of Fatty Liver	31
Chapter Three: TECHNIQUES OF FAT DETECTION BY MRI	48
Chapter Four: Basic Principles of MR Spectroscopy	64
Chapter Five: Role of MR Spectroscopy in Fatty Liver	79
Chapter Six: Other Methods for Detection and Quantification of	
Steatosis	89
Summary	101
References	105
Arabic Summary	

LIST OF ABBREVIATIONS

CNR : Contrast to-Noise-Ratio
FLASH : Fast Low Angle Shot
IVC : Inferior Vena Cave
LHV : Left Hepatic Vein

LP : Left Portal Vein

MHV : Middle Hepatic Vein

MRI : Magnetic resonance imaging

PV : Portal Vein

RHV : Right Hepatic VeinRPV : Right Portal Vein

SE : Spin Echo

SGE : Spoiled gradient echo

SI : Signal intensity

SNR : Signal to-Noise Ratio

SPIO: Super Paramagnetic Iron Oxide

SS : Single Shot

STIR : Short T₁ Inversion Recovery

T : Tesla

TE: Time of Echo

TR: Time of Repetition

Turbo FLASH : Turbo fast low-angle shot

USPIO : Ultra small superparamagnetic iron oxides

3D-GRE: Three Dimensional Gradient Recalled Echo

NAFLD : Non Alcholic fatty liver disease

NASH : Non Alcholic steatohepatitis

LIST OF FIGURES

Figure	1.1	:	The surfaces and external features of the liver	14
Figure	1.2	:	Relations of the liver	15
Figure	1.3	:	Segmentation of the liver – Couinaud	18
Figure	1.4	:	relations of the hepatic artery, bile duct and portal	
			vein to each other	21
Figure	1.5	:	The portal vein and its tributaries (semi-	
O			diagrammatic)	22
Figure	1.6	:	Arrangement of the hepatic venous territories	22
Figure	1.7	:	Normal hepatic veins. Axial image	25
Figure	1.8	:	Portal vein anatomy	25
Figure	1.9	:	Sagittal MR T2 images of the liver	27
Figure	1.10	:	CoronalT2MR image of the liver	27
Figure	1.11	:	Normal MR Liver signal intensity	28
Figure	2.1	:	(a) Glycogenic hepatopathy (b) Diabetic	
8			hepatosclerosis	32
Figure	2. 2	:	Development of nonalcoholic hepatic steatosis	35
Figure	2. 3	:	Histologic features of fibrosis in nonalcoholic	
8	_, _,		steatohepatitis	40
Figure	2. 4	:	Sclerosing hyaline necrosis	45
Figure	3.1	:	Typical MR imaging examination of the liver	51
Figure	3.2	:	Chemical Shift Imaging	52
Figure	3.3	:	Schematic illustrates chemical shift	
8			misregistration	53
Figure	3.4	:	Axial gradient-echo in-phase image acquired at	
8			field strength of 3.0 T	55
Figure	3.5	:	MR images obtained in an anteroposterior	
0			frequency-encoding direction	56
Figure	3.6	:	Sagittal T2-weighted MR image	56
Figure	3.7	:	Axial gradient-echo opposed-phase image	
0			acquired at field strength of 3.0 T	60
Figure	3.8	:	an adrenal adenoma and fatty liver in-phase	60
Figure	3.9	:	T1-weighted MR images obtained without and	
9		-	with fat saturation	62
Figure	3.10	:	Single-shot fast spin-echo (FSE) images obtained	
<i>G</i> ,	-		without and with fat saturation	63
Figure	4.1	:	Diagram shows metabolite frequency relative to	
0			water frequency	68

Figure	4.2	: MR spectrum obtained in healthy liver in a36- year-old woman shows the frequency locations of water and lipid peaks	70
Figure	4.3	: Diagram shows the T1 recovery curves of fat and	73
Figure	44		74
Figure		: Frequency- and phase-corrected MR spectra	, ,
riguit	7.0	- · ·	76
Figure	4.6	: Phase-corrected spectra from a patient with grade	, 0
6			77
Figure	5.1		84
Figure		: Diagram shows the dominant lipid peaks in liver	
O		MR spectra	85
Figure	5.3	: MR spectra show increasing size of lipid peaks relative to the water peak with increasing steatosis	
		grade	86
Figure	6.1	: Longitudinal US images show mild to severe fatty	
		liver disease in three different patients	92
Figure	6.2	: Calculation of the hepatic attenuation index for fat	
		quantification at CT	97
Figure	6.3	: Dual-energy CT evaluation of liver in a 45-year-	
		old male potential donor for living transplantation.	98
Figure	6.4	: Images showing Scores of ultrasound	
		elastography	100

LIST OF TABLES

Table	1.1	:	Segmental ana	tomy of the l	liver			18
Table	2.1	:	causes of non alcoholic fatty liver disease					33
Table	2.2a	:	Nash Activity	grade				43
Table	2.2b	:	Staging of fibrosis for NASH					43
Table	2.3a	:	Grading for NAFLD					44
Table	2.3b	:	Staging for NA	AFLD				44
Table	4.1	:	Metabolites	Detected	with	Proton	MR	
			Spectroscopy.					70

Intr	nd	IIC	tin	n
	UU	uu	LIU	

INTRODUCTION

Fatty liver is a common abnormality among patients undergoing cross-sectional imaging of the abdomen. The image-based diagnosis of fatty liver usually is straightforward, but fat accumulation may be manifested with unusual structural patterns that mimic neoplastic, inflammatory, or vascular conditions. , Fatty liver is a term applied to a wide spectrum of conditions characterized histologically by triglyceride accumulation within the cytoplasm of hepatocytes. The two most common conditions associated with fatty liver are alcoholic liver disease and nonalcoholic fatty liver disease. Alcoholic liver disease is caused by excess alcohol consumption, whereas the nonalcoholic variant is related to insulin resistance and the metabolic syndrome .Other relatively common conditions associated with fat accumulations in the liver include viral hepatitis and the use or overuse of certain drugs. Rarer associated conditions include dietary and nutritional abnormalities and congenital disorders. (Wanless IR, Shiota K at 2004)

These conditions all cause a triglyceride accumulation (steatosis) within hepatocytes by altering the hepatocellular lipid metabolism, in particular, by causing defects in free fatty acid metabolic pathways Hepatocytes in the center of the lobule (near the central vein) are particularly vulnerable to metabolic stress and tend to accumulate lipid earlier than those in the periphery Consequently, in many of these conditions, steatosis tends to be most pronounced histologically in the zone around the central veins and less pronounced in zones around the portal triads. In advanced cases, there is diffuse, relatively homogeneous involvement of the entire lobule. There. (Venkataraman S, Braga L, Semelka RC at 2002)

Fatty liver may be diagnosed by US if liver echogenicity exceeds that of renal cortex and spleen and there is attenuation of the ultrasound wave, loss of definition of the diaphragm, and poor delineation of the intrahepatic architecture. To avoid false-positive interpretations, fatty liver should not be considered present if only one or two of these criteria are fulfilled. by CT Fatty liver can be diagnosed if the attenuation of the liver is at least 10 HU less than that of the spleen or if the attenuation of the liver is less than 40 HU. In severe cases of fatty liver, intrahepatic vessels may appear hyperattenuated