HbAic as an indicator of preconditioning in patients with a first time Acute Myocardial Infarction

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiology

Presented By

Ayman Ashmawy Gaballa M.B., B.Ch.

Supervised by

Professor Doctor/ Ali Ahmed Al-Abd

Professor of Cardiology Faculty of Medicine – Ain Shams University

Doctor/Samh Samir Raafat

Lecturer of Cardiology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2010

List of Contents

Ti	tle	Page
•	Introduction	1
•	Aim of the Review	4
•	Chapter (1): DM & CHD	5
•	Chapter (2): Ischemic preconditioning	28
•	Chapter (3): Hemoglobin A1c	49
•	Patients and Methods	58
•	Results	62
•	Discussion	77
•	Study Limitation	85
•	Conclusion	86
•	Recommendations	87
•	Summary	88
•	References	91
•	Master Tables	118
•	Arabic Summary	

List of Tables

Ta	Cab. No Title	Page
1.	. Lipoprotein Abnormalities in Diabetes	6
2.	2. Coagulation and Fibrinolytic Abnormali- Significance in Diabetes	_
3.	B. Diabetes-Related Alterations in Endotheli Properties	
4.	The relationship between HbA1c and glucose	
5.	5. Showing the baseline characteristics of th	
6.	5. Showing the mean EF% and the mean peathe different groups	
7.	7. Showing insignificant difference in the m male and female in different groups. (N) n	umber of patients
8.	3. Showing insignificant difference in the enzyme in both male and female in differen	-
9.	2. Showing the mean EF % in both anterior the different groups	
10.	Showing the peak of CK in both anterior the different group	
11.	. Showing the relation between HbA1c an both EF % and peak CK after MI	

List of Figures

Fig.	No Title Page
1.	Endothelial dysfunction in DM 14
2.	The vascular effects of advanced glycation end products (AGEs)
3.	Early phase preconditioning
4.	Late phase preconditioning
5.	Various triggers, mediators and end -effectors involved in ischemic preconditioning-mediated cardioprotection 35
6.	Showing the summary of the mechanism of preconditioning
7.	Mechanisms involved in preconditioning-mediated cardioprotection
8.	The relationship between HbA1c and the mean blood glucose levels
9.	Showing the mean EF % in the different groups 64
10.	Showing the mean peak CK in the different groups 64
11.	Showing the mean EF % in males the different groups 65
12.	Showing the mean EF % in females the different groups
13.	Showing the mean peak CK in males the different groups
14.	Showing the mean peak CK in females the different groups
15.	Showing the mean EF % in the patients with anterior MI reperfused by 1ry PCI in the different groups 70

List of Figures (Cont.)

F1g	s. No Title	Page
16.	. Showing the mean EF % in the pareperfused by thrombolytic in the di	
17.	. Showing the mean EF % in the parent reperfused by 1ry PCI in the different	
18.	. Showing the mean EF % in the pareperfused by thrombolytic in the di	
19.	. Showing the mean peak CK in the MI reperfused by 1ry PCI in the diffe	•
20.	. Showing the mean peak CK in the MI reperfused by thrombolytic in th	-
21.	. Showing the mean peak CK in the preperfused by 1ry PCI in the different	
22.	. Showing the mean peak CK in the MI reperfused by thrombolytic in the	-
23.	. The relation between HbA1c& mean	EF% 76
24.	. The relation between HbA1c&mean	peak CK 76

List of Abbreviations

ACC	American College of Cardiology		
ACS	Acute coronary syndrome		
AHA	American Heart Association		
AGE	Advanced glycosylation end products		
AT II	Angiotensin II		
CABG	Coronary artery bypass graft.		
CAD	Coronary artery disease .		
CAMS	Cell adhesion molecules		
CAN	Cardiac autonomic neuropathy		
СЕТР	Cholesteryl ester transfer protein		
CHD	Coronary heart disease		
CHF	Congestive heart faliure		
CML	N-(carboxymethyl) lysine		
COX-2	Cyclooxygenase-2		
CRP	C-reactive protien		
DAG	Diacyl glycerol		
DES	Drug eluting stent		
DM	Diabetes mellitus		
eAG	Estimated Average glucose		
ECG	Electrocardiogram		

List of Abbreviations (Cont.)

eNOS.	Endothelial nitric oxide synthase		
ERK	Extracellular regulated kinase		
ET-1	Endothelin-1		
FFA	Free fatty acids		
FWOP	First window of protection		
GM-CSF	Granulocyte-macrophage colony stimulating Factor		
HbA1c	Glycated hemoglobin		
HDL	High-density lipoprotein		
HMGB1	High-mobility group box-1		
HTN	Hypertension.		
HS	Heparin sulfate		
IP3	Inositol triphosphate		
IPC	Ischemic preconditioning		
JAK	Janus kinase		
K _{ATP}	ATP-sensitive potassium channel		
ICAM	Intercellular adhesion molecule		
IL-1	Interleukin-1		
iNOS	Inducible nitric oxide synthase		
ІкВ	Inhibitor of nuclear factor kappa B		

List of Abbreviations (Cont.)

LDL	Low-density lipoprotein		
Lp a	Lipoprotein a		
LV	Left ventricular.		
LVEF	Left ventricular ejection fraction.		
MACE	Major adverse cardiac events		
MAO	Monoamine oxidase		
MAP	Mitogen-activated protein		
MEK	Mitogenactivated protein kinase		
MI Myocardial infarction.			
MCP-1	Monocyte chemoattractant protein-1		
M-CSF	Macrophage-colony stimulating factor		
MPTP	Mitochondrial permeability transition pore		
MSR	Macrophage scavenger receptor		
NFkB	Nuclear factor kappa B		
NO	Nitrous oxide		
MTHFR	Methylene tetrahydrofolate reductase		
PAI-1	Plasminogen activator inhibitor 1		
PCI	Percutaneous coronary intervention		
PDK	Phosphodiesterase kinase		
PG	Prostaglandin		

List of Abbreviations (Cont.)

PI3K	Phosphatidylinositol-3-kinase		
РКВ	Protein kinase B		
PKC	Protein kinase C		
PLC	Phospholipase C		
PLD	Phospholipase D		
PTCA	Percutaneous transluminal coronary angioplasty.		
RAGE	Receptor for advanced glycosylation end products		
ROS	Reactive oxygen species		
SMCs	Smooth muscle cells		
STAT	Signal transducer and activator of transcription		
SWOP	Second window of protection		
TF	Tissue factor		
ТК	Tyrosine kinase		
TNF-α	Tumor necrosis factor-alpha		
VCAM-1	Vascular cell adhesion molecule-1.		
VLDL	Very Low-Density Lipoprotein		
VSMC	Vascular smooth muscle cell		
vWF	von Willebrand factor		
VLA-4	Very late antigen-4		

Acknowledgments

Praise be to Allah, the Merciful, the Compassionate for all the countless gifts I have been offered. Of these gifts, those persons who were assigned to give me a precious hand so as to be able to fulfill this study. Some of them will be cordially acknowledged.

I am absolutely lucky to be supervised and directed by **Professor Doctor/ Ali Ahmad Al Abd,** Professor of Cardiology, Ain Shams University, for his skillful assistance in preparation of this study.

I also acknowledge **Doctor/ Samh Samir**, Lecturer of Cardiology, Ain Shams University, for his sincere directions and help.

I am also delighted to express my deep gratitude and thanks to my family, father, mother, my wife and my baby "Lara".

Ayman Ashmawy Gaballa

Introduction

Heart disease, particularly coronary heart disease (CHD) is a major cause of morbidity and mortality among patients with diabetes mellitus. Compared to nondiabetics, diabetics are more likely to have CHD, to have multivessel disease when it occurs, and to have episodes of silent ischemia. As a result of these and other factors, diabetics with CHD have a worse outcome and poorer long-term survival compared to nondiabetics with CHD (*Richard W. Nesto, 2009*).

Morbidity, mortality and re-infarction rate are higher following MI in diabetic than non-diabetic subjects, with one-year mortality in this population as high as 50% (*Ian L. Williams et al.*, 2003).

Transient ischemic episodes have cardio protective effects against subsequent ischemia, which is called ischemic preconditioning (*Murry et al., 1986*).

Angina pectoris occurring shortly before the onset of AMI limits infarct size, maintains left ventricular (LV) function and enhances survival (*Kloner et al.*, 1998).

Kloner et al., reviewing 3,002 patients enrolled in the TIMI-9B study, have reported that the benefits of pre-infarction angina on clinical events were manifest only when the time between onset of angina and infarction was within 24 h and that a history of any angina alone was not associated with a reduced event rate. Thus, "prodromal angina" was defined as angina occurring within 24 h before the onset of infarction (*Kloner et al.*, 1998).

Some experimental studies have reported that ischemic preconditioning is lost in the presence of diabetes. It has been suggested that longer duration of diabetes, higher plasma glucose level were associated with the increased vulnerability of diabetic hearts (*Kersten et al.*, 2000).

There are several possible mechanisms that may explain the loss of ischemic preconditioning in diabetic hearts (*Speechly-Dick et al.*, 1995).

Ischemic preconditioning is mediated by activation of the KATP channel. It has been reported that the nature of the KATP channel is altered in diabetic hearts (*Smith*, 1996).

Also, acute hyperglycemia has been shown to abolish ischemic preconditioning (*Kersten et al., 1998*).

In addition, oral hypoglycemic drugs inhibit the KATP channel. Several previous studies have reported that oral hypoglycemic drugs prevent ischemic preconditioning and increase mortality after AMI. However, it is still noteworthy that the cardioprotective effects of prodromal angina were lost even in patients with diabetes who had been treated without oral hypoglycemic drugs (*Garratt et al.*, 1999).

Hemoglobin A1c (HbA1c) is a minor component of hemoglobin to which glucose is bound. HbA1c also is referred to as Glycosylated or glucosylated hemoglobin. HbA1c concentration

reflects average blood glucose concentration over 3-4 months and is a sensitive and reliable marker of glucose metabolism. Cross-sectional studies in nondiabetic individuals have shown a relationship between HbA1c and prevalent CAD as well as markers of sub clinical atherosclerosis (*Kato et al., 2004*).

HbA1c level above 6.2% were associated with an increased risk of macro vascular disease. For each 1% elevation in HbA1c level, CAD increased by 11% (*Coutinho et al.*, 1999).

A strategy of intensive glucose control that lowered the glycated hemoglobin value to 6.5% yielded a 10% relative reduction in the combined outcome of major macro vascular and micro vascular events (*The ADVANCE Collaborative Group*, 2008).

Aim of the Work

Study the value of HbA1c an indicator of ischemic preconditioning in acute myocardial infarction through:

- 1. Study the effect of DM on preconditioning in AMI.
- 2. Study the benefit of controlling DM in preserving preconditioning.