APPLICATION OF ENTERIC VIRUSES IN THE DETECTION OF WATER POLLUTION

By

MOHAMED IBRAHIM HASAN AZZAM

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 2003

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Agricultural Viruses)

Department of Agricultural Microbiology
Faculty of Agriculture
Ain Shams University

Approval Sheet

APPLICATION OF ENTERIC VIRUSES IN THE DETECTION OF WATER POLLUTION

By

MOHAMED IBRAHIM HASAN AZZAM

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 2003

This thesis for M.Sc. degree has been approved by:
Prof. Dr. Adel Mahmoud Hammad
Prof. of Agricultural Virology, Faculty of Agriculture,
Minia University
Prof. Dr. Mamdouh Hussein Abd el-Ghaffar
Prof. of Agricultural Virology, Faculty of Agriculture,
Ain Shams University
Prof. Dr. Khalid Abd El-Fattah El-Dougdoug
Prof. of Agricultural Virology, Faculty of Agriculture,
Ain Shams University
Prof. Dr. Badawi Abd El-Salam Othman
Prof. of Agricultural Virology, Faculty of Agriculture,
Ain Shams University

Date of Examination: 18/7/2010

APPLICATION OF ENTERIC VIRUSES IN THE DETECTION OF WATER POLLUTION

By

MOHAMED IBRAHIM HASAN AZZAM

B.Sc. Agric. Cooperative Sc., Higher Institute for Agric. Cooperation, 2003

Under the supervision of:

Prof. Dr. Badawi Abd El-Salam Othman

Prof. of Agricultural Virology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Khalid Abd El-Fattah El-Dougdoug

Prof. of Agricultural Virology, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University

Dr. Aya Salah El-Din Hakim

Associate Research Prof. of Microbiology, Central Laboratory for Environmental Quality Monitoring, National Water Research Center

ABSTRACT

Mohamed Ibrahim Hasan Azzam: Application of Enteric Viruses in the Detection of Water Pollution. Unpublished M.Sc. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2010.

This study aims to evaluate the virological, bacteriological and physico-chemical properties of the Nile River at El-Rayah El-Menofy before (inlet) and after (outlet) treatment in three drinking water stations. Water samples were taken during the period from February 2007 to November 2009. The bacteriological analyses involved were coliphage assay as a potential indicator of sewage pollution; total viable bacterial counts (TVBCs); total coliforms (TC) and estimation of fecal coliforms (FC), fecal *streptococci*. This study also included the detection of human viruses (enteric viruses and H5N1) by both of RT-PCR and real-time-RT-PCR throughout four seasons.

The results of physicochemical tests revealed that, El-Bagour site (inlet and outlet) especially in warmer seasons (summer and spring) was suffering from chemical pollution. While both of Menof and Shibin El-Kom (inlet and outlet) are within the permissible standard limits. On the other hand, the bacteriological analyses showed that TVBCs for River water (inlet) ranged from $0.3X10^4$ to $240X10^4$ cfu/ml and from $0.2X10^4$ to $160X10^4$ cfu/ml at 22° C and 37° C, respectively, while for drinking water (outlet) ranged from 30 to 100 cfu/100ml and from 20 to 80 cfu/100ml at 22° C and 37° C, respectively. Identification of *E.coli* isolates in inlet water samples were identified according to bergey's manual.

Bacteriophages infecting *Escherichia coli* were detected in both of sewage polluted samples and chlorinated water samples especially in warmer seasons (summer, spring and autumn). The phage concentration ranged from

3X10² to 8.0X10⁹pfu/ml. However, maximum counts were recorded during summer and the minimal were detected in winter. The results of the fecal indicators counts revealed that their densities increased from up to down stream. The result of the present investigation indicated that, the Nile River water at El-Rayah El-Menofy is subjected to sewage pollution and consequently high microbial contents were detected even after treatment in drinking water stations.

Water samples from the tested sites were subjected to using ultrafiltration process to detect enteroviruses and H5N1 using specific primers throughout four seasons. Enteroviruses were detected using RT-PCR and rt-RT-PCR in inlet water of El-Bagour and Shibin El-Kom stations in summer season only, while H5N1 was not detected in all sites through out four seasons. Transmission electron microscopy revealed that the phage particles had an isometric head and long-contractile tail. Some particles appeared to have a short tail with full heads. While enteric virus particles were found to be an isometric particles with 24–30 nm in diameter.

Key Words: Indicator Coliform bacteria, Pollution, Coliphages, Enteroviruses, H5N1, RT-PCR, real-time-RT-PCR, Drinking water, El-Rayah El-Menofy, Nile River.

ACKNOWLEDGMENT

First of all, I must thank ALLAH most gracious for helping me to go through this work

I would like to express my sincere thanks, special gratitude and appreciation to my supervisor **Prof. Dr. Badawi A. Othman**, Professor of Agricultural Virology & head of Agric. Microbiology Department, Faculty of Agriculture, Ain Shams University, who devoted lots of his time and interest in supervising this work with his valuable advice, generous assistance and constructive criticism.

My deepest gratitude and sincere thanks to **Prof. Dr. Khalid Abd El-Fattah El-Dougdoug**, Professor of Agricultural Virology, Dept. of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for his efforts and valuable assistance to follow up the progress of this work with his continuous guidance during his supervision.

I am sincerely thankful to **Dr. Aya Salah El-Din Hakim,** head of Microbiology, Dept. of Microbiology, Central Laboratory for Environmental Quality Monitoring "CLEQM", for giving every possible help, facilities and support throughout this work.

I wish to offer gratefull thanks to **Prof. Dr. Mohamed Ahmed Ali,** Professor of Virology, Environmental Virology Lab., Water Pollution Researches Dept., National Research Centre "NRC", for his sincere cooperation and faithful advice.

Special thanks to every one of my Family and my colleagues for their cooperation and kind encouragement during my study.

CONTENTS

No.	Page
LIST OF TABLES	III
LIST OF FIGURES	IV
LIST OF ABBREVIATIONS	VII
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
III. MATERIALS AND METHODS	38
IV. RESULTS	59
Part I. Physical and chemical characteristics of water	
samples	59
1.1. Temperature	59
1.2. Values of pH	59
1.3. Turbidity	60
1.4. Electric conductivity	63
1.5. Total dissolved solids	64
1.6. Biochemical oxygen demand	67
1.7. Chemical oxygen demand	68
1.8. Dissolved oxygen	69
1.9. Major anions	72
1.10. Major cations	74
1.11. Trace metals	75
Part II. Bacteriological characteristics of water	
samples	80
2. Bacteriological analyses of water samples	80
2.1. Total viable bacterial counts	80
2.2. Coliform group	84
2.2.1. Total coliform	84
2.2.2. Fecal coliform	88
2.2.3. Fecal streptococci	90
2.3. FC/TC percentage	90
2.4. FC/FS ratio	93
2.5. Isolation and identification of <i>E.coli</i> isolates	93
Part III. E.coli phage	94
3.1. Detection of coliphages	94
3.2. Isolation, propagation and purification of	05
Coliphages	95
3.3. Morphological characteristics of coliphages	98
3.4. Host range pattern of the phages	100

No.	Page
Part IV. Water borne viruses	100
4.1. Detection of enteric and H5N1 viruses	100
4.1.1. RNA extraction.	100
4.1.2. Evaluation of enteric and H5N1 viruses recovery	
in collected water samples	100
4.2. Detection of water borne viruses in water samples	101
4.2.1. TEM examination.	101
4.2.2. Real-time-RT-PCR.	102
4.2.3. RT-PCR	105
5. Statistical analysis	107
V. DISCUSSION	109
VI. SUMMARY	126
VII. REFERENCES	132
ARARIC SUMMARY	

LIST OF TABLES

Ta	able No.	Page
1.	Physico-chemical properties of water samples collected from different sites at different seasons	62
2.	Physical characters of water samples collected from different sites at different seasons	66
3.	Chemical characters of water samples collected from different sites at different seasons.	71
4.	Concentration of major anions (mg/l) in both of raw and chlorinated water samples collected from different sites	73
5.	Concentrations of major cations (mg/l) in both of raw and chlorinated water samples collected from different sites.	75
6.	Concentrations of trace metals (mg/l) in inlet and outlet water of the different sites	77
7.	The total viable bacterial counts (TVBCs) in water samples collected from different locations at different seasons	82
8.	The total coliforms (TC), fecal coliforms (FC) and fecal <i>streptococci</i> (FS) CFU/100ml of water samples using membrane filter method	86
9.	Percentage of FC/TC and FC/FS in inlet water of the three tested water treatment stations	91
10	Qualitative and quantitative assay of coliphages in raw (inlet) and chlorinated (outlet) water samples collected from different sites along the four seasons	96
11	. Lysosensibility of different <i>E.coli</i> strains to phage isolates	100
12	Description 2. Qualitative and quantitative assay of human viruses in both of raw (inlet) and treated (outlet) water samples collected from different sites using rt-PCR and real-time PCR	103

LIST OF FIGURES

Fig. No.	Page
1. Map showing the sampling location at El-Menofia Governorate	39
2. A photographe of biochemical oxygen demand system	42
3. A photographe of bacteriological filtration system	45
4. A photographe of virological ultrafiltration system	52
5. The average pH values of water samples in different seasons	60
6. The average turbidity values of Nile River water in different seasons	61
7. The average turbidity values of outlet water samples in different seasons	61
8. EC values in both of El-Bagour and Shibin El-Kom during summer season.	63
9. The average EC values of water samples during different seasons	64
10. The average TDS values of water samples during different seasons	65
11. The average BOD values for Nile River water during different seasons	67
12. The average COD values for Nile River water during different seasons	68
13. The average COD values for chlorinated water during different seasons	69
14. DO of El-Rayah El-Menofy raw water as compared to that of treated water samples	70
15. Total alkalinity of raw water samples compared to that of drinking water samples	74
16. The average values of Cu in Nile River and in drinking water	78

Fig.	No.	Page
17.	The average values of Fe in Nile River and in drinking water	78
18.	The average values of Mn in Nile River and in drinking water	79
19.	The average values of Zn in Nile River and in drinking water	79
20.	Average values for Al, Ba and Sr in raw water and in drinking water	80
21.	Total viable bacterial counts (TVBCs) in surface water collected from El-Rayah El-Menofy at 22°C and 37°C during different seasons	83
22.	Total viable counts (TVBCs) in both outlet of El-Bagour (Ba**) and Shibin El-Kom (Sh**) at 22°C and 37°C during summer and spring seasons	84
23.	Colonies of total coliform in Petri dish containing M- Endo Agar LES medium showing metallic sheen colonies	85
24.	Total coliform (TC) in surface untreated water collected from El-Rayah El-Menofy at different sites during different seasons	87
25.	Colonies of fecal coliform in Petri dish containing M-FC agar medium showing Blue colonies in raw water samples	88
26.	Fecal coliform (FC) in surface water collected from El-Rayah El-Menofy during different seasons	89
27.	Colonies of fecal <i>streptococci</i> in Petri dish containing M-Enterococcus agar medium showing red to pink colonies	90
28.	Percentage of FC/TC ratio for El-Bagour and Shibin El-Kom inlet water in both of summer and winter	02
	seasons	92

Fig.	No.	Page
29.	Plaque assay technique illustrates the presence of coliphages of different morphological plaques lysis of bacterial lawn by bacteriophage can be clearly seen.	94
30.	Purification of coliphags with dextran sulfate- polyethylene glycol, with intermediate phase (Cake) containing the phage particles	98
31.	Micrographs of coliphaghe isolated by ultrafiltration of water samples showing phage with isometric head and contractile tail particles	99
32.	Electron micrograpg of viruses stained with uranyl actate found in raw water samples.	101
33.	Amplification profiles of enteroviruses obtained by real-time-RT-PCR with specific primers pairs in raw water samples.	104
34.	Amplification profiles of H5N1 obtained by real-time-RT-PCR with specific primers pairs in both of raw and chlorinated water samples	105
35.	Agarose gel electrophoresis 2% showing the PCR products amplified using specific primer of enteroviruses from concentrated raw water samples.	106

LIST OF ABBREVIATIONS

Absorption at 260 nm /Absorption at 280 nm
Automatic temperature compansation
American Type Culture Collection
And other (et alii)
American public health association
Avian influenza
El-Bagour inlet
El-Bagour outlet
Base pair
Biochemical oxygen demand
Centigrade
Complementary DNA
Colony forming unit
Central Laboratory for Environmental Quality
Monitoring
Centimeter
Chemical oxygen demand
Threshold cycle
Diethylpyrocarbonate
deoxy nucleotide triphosphate
Dissolved oxygen
Deoxy ribonucleic acid
Days post-inoculation
Dithiothreotol
Ethidium bromide
Electrical conductivity
Ethylene diamine tetra acetic acid
· ·
For example (<i>Exampli gratia</i>) Electron microscope

EPA EtoH EV	Environmental Protection Agency Ethanol Enteroviruses
(F)	
F FAO FC Fig. FS	Forward Food and Agriculture Organization Fecal coliform Figure Fecal streptococci
(G)	
g gal	gram gallon
(H)	
HA HPC HPAI hrs	Hemagglutinin Heterotrophic bacterial population Highly pathogenic avian influenza Hours
(I)	
IC ICD FG	Ion chromatography
ICP-ES ICTV i. e. Inst.	Inductively coupled plasma-Emission spectrometry International Committee on Taxonomy of Viruses That is (<i>id est</i>) Institute
ICTV i. e.	International Committee on Taxonomy of Viruses That is (<i>id est</i>)
ICTV i. e. Inst.	International Committee on Taxonomy of Viruses That is (<i>id est</i>)
ICTV i. e. Inst. (K) KDa Kg Km	International Committee on Taxonomy of Viruses That is (id est) Institute Kilo Dalton Kilo gram Kilo metre
ICTV i. e. Inst. (K) KDa Kg Km Kv	International Committee on Taxonomy of Viruses That is (id est) Institute Kilo Dalton Kilo gram Kilo metre
ICTV i. e. Inst. (K) KDa Kg Km Kv (L) L. Lab.	International Committee on Taxonomy of Viruses That is (id est) Institute Kilo Dalton Kilo gram Kilo metre Kilo volt Liter Laboratory log to the base 10

ix

m	Meter
m Me*	Menof inlet
Me**	Menof outlet
μg	Microgram Micrometer
μm	Micromose
μmhos	
mg MF	Milligram Membrane filter
MilliQ	ultra pure water Minute
min.	Microliter
μl 1	
ml	Millimeter(s)
mm	Millimeter(s)
mM	Millimolar
mmhos	Millimose
MMLV	Moloney murine leukemia virus
MPN	Standard most probable number
MUG	4-methyl umbelliferyl-β-D-glucuronide
M.Wt	Molecular weight
(N)	
NA	Neuraminidase
Na_2HPO_4	Di-sodium hydrogen phosphate
nm	nanometer
N	Normality
No.	Number
NRC	National research centre
nt	Nucleotide
NTU	Nephelometric turbidity unit
NWRC	National Water Research Center
NWQC	National Water Quality Center
(P)	
PAGE	Polyaccrylamide gel electrophoresis
	i orgaeer grammae ger ereedrophoresis
PCR	Polymerase chain reaction
PCR PEG	• • • •
	Polymerase chain reaction Polyethylene glycol
PEG PFU	Polymerase chain reaction Polyethylene glycol Plaque forming unit
PEG PFU pH	Polymerase chain reaction Polyethylene glycol
PEG PFU	Polymerase chain reaction Polyethylene glycol Plaque forming unit Hydrogen ion concentration