Assessment of Exercise Testing After Repair of Tetralogy of Fallot

Thesis

Submitted for Partial Fulfillment of Master Degree
In Pediatrics

By

Rafik Fathy Abd Elaziz

M.B., B.CH. (Cairo University)

Under Supervision of

Prof Dr. Alyaa Amal Kotby

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Dr. Hassan Mohamad Elnabawy

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University

Dr. Waleed Mohamad El-Guindy

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2010

Acknowledgement

First of all, thanks to Allah the most merciful for guiding me through and giving me the strength to complete this work the way it is.

It is a pleasure to express my deepest thanks and profound respect to my honored Prof. Dr. Alyaa Amal Kotby, Professor of Pediatrics and Pediatric Cardiology, Faculty of Medicine, Ain Shams University, for her continuous encouragement and valuable supervision and guidance throughout this work. It has been an honor and privilege to work under her generous supervision.

Also, I wish to express my deep gratitude to **Dr. Hassan**Mohamad Elnabawy, Assistant Professor of Cardiothoracic

Surgery, Faculty of Medicine, Ain Shams University, for his

valuable suggestions, good support and unlimited help during this

work. I wish to be able one day to return to him a part of what he

had offered to me.

I am also deeply grateful and would like to express my sincere thanks and gratitude to **Dr. Waleed Mohamad El-Guindy**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for his great help and support and his continuous guidance, correction and explanation which helped me to finish this work.

Also, I would like to thank my patients and their families

Rafik Fathy Abd Elaziz

Contents

Title Page	No.
List of abbreviations	ii
Introduction and Aim of the Work	1
• Exercise Stress Testing in Children: Cardiovascular Response to Exercise Indication of pediatric sress testing Contraindication of pediatric stress testing. Pretest instruction Preparation of the test Methodology of exercise testing Exercise parameters and monitoring exercise testing. Indication of exercise testing termination Safety of pediatric stress testing	4 11 12 14 15 18
• Tetralogy of Fallot: Historical review. Definition Incidence Etiology Anatomic features Other morphological features Associated anomalies Pathophysiology Clinical manifestations Investigations	32 33 33 34 38 39 41
Treatment	5 2

Hemodynamic abnormalities and residual
defects after TOF repair60
• Exercise Tolerance after Total Repair of
Fallot Tetralogy:65
Introduction65
Exercise testing after TOF repair66
Factors affecting exercise capacity after
TOF repair70
Subject and Methods76
Results86
Discussion112
Summary128
Conclusion137
Recommendations140
References142
Arabic Summary1

List of Abbreviations

BBB : Bundle branch block
BMI : Body mass index
bpm : Beat per minute
BSA : Body surface area
CHB : Complete heart block
CHD : Congenital heart disease
CHF : Congestive heart failure

CMRI : Cardiac magnetic resonance imaging

DBP : Diastolic blood pressure

DORV : Double outlet right ventricle

ECG : Electrocardiogram

FISH : Fluorescence insitu hybridization

HRmax : Maximum heart rate
Kph : Kilometer per hour
MET : Metabolic equivalent
PA : Pulmonary artery

PDA : Patent ductus arteriosus PR : Pulmonary regurgitation

PS : Pulmonary stenosis

PVCs : Premature ventricular complexes

RAD : Right axis deviation

RBBB : Right bundle branch block

RV : Right ventricular

RVOT : Right ventricular outflow tract

SBP : Systolic blood pressure

TOF : Tetralogy of Fallot

VO2 max : Maximum oxygen consumption

VSD : Ventricular septal defect WPW : Wolf Parkinson White.

List of Figure

Figure	No. Title Page	No.
Fig. (1):	Illustration of the interaction of the lungs, heart, and musculoskeletalsystem during exercise	
Fig. (2):	Placement of stress ECG electrodes according to modified version of the Mason-Likar placement	16
Fig. (3):	Pathophysiology of the tetralogy of Fallot	43
Fig. (4):	Chest x-ray of an 8 yr old boy with the tetralogy of Fallot. 49	
Fig. (5):	Parasternal short axis view of the echocardiogram of a patient with tetralogy of Fallot.	
Fig. (6):	Modified parasternal long axis view from the same patient as imaged for Figures 5.	51
Fig. (7):	Palliative procedures that can be performed in patients with cyanotic cardiac defect with decreased pulmonary blood flow.	
Fig. (8):	Total correction of tetralogy of Fallot	59
Fig. (9):	GE Health Care Ultrasound Vivid 7	79
Fig. (10):	Schiller treadmill (Model MTM-1500, Switzerland)	
Fig. (11):	Schiller monitor (Model Argus LCM, Switzerland)	
Fig. (12):		
Fig. (13):	: Incomplete RBBB	102
Fig. (14):	: Complete RBBB	103
Fig. (15):	Echocardiography picture of a 6 years old female patients shows sever PR after TOF repair.	

List of Figure (Cont.)

Figure N	o. Title	Page No.
Fig. (16):	Echocardiography picture of a 12 years patient shows moderate PR after TOF re	
Fig. (17):	Exercise stress ECG of a 12 years patient shows sinus tachycardia appearance of ventricular arrhythmias.	with no
Fig. (18):	Exercise stress ECG of a 6 years patient shows chronotropic incompetent	
Fig. (19):	Exercise stress ECG of a 11 years patient shows sinus tachycardia	
Fig. (20):	Exercise stress ECG of a 6 years of patient shows infrequent PVCs	
Fig. (21):	Exercise stress ECG of a 8 years patient 6 years after total correction shows sinus tachycardia	for TOF
Fig. (22):	24 hour holter monitoring of a 9 years patient 6 years after total correction shows CHB.	for TOF
Fig. (23):	Baseline ECG of the same patient showing RBBB with absence of CHB.	· - /

List of Table

Table No.	Title F	Page No.
Table (1):	Indications for pediatric stress testing	12
Table (2):	Contraindication to stress testing in pediatri	cs13
Table (3):	Bruce treadmill protocol	20
Table (4):	Modified Bruce treadmill protocol	21
Table (5):	Balke Treadmill protocol	22
Table (6):	Percentiles of Endurance time (min) by treadmill protocol	
Table (7):	Maximal Dynamic Systolic Blood Pre Response (mm Hg): Bruce Treadmill Pro (Mean ±SD).	otocol
Table (8):	Characteristic of the study group	86
Table (9):	Comparison between patients and control	87
Table (10):	Comparison between patients and contr regard exercise stress testing	
Table (11):	Target HRmax for the patients according to anthropometric data, HRmax and % of HRmax	target
Table (12):	Target HRmax for the control subjects according to their anthropometric data, HRmax and target HRmax	% of
Table (13):	Comparison between patients aged < 5 year those ≥ 5 years at time of total repair as respectively.	egard
Table (14):	Comparison between Patients with less the years elapsed time after operation and those more than 2 years elapsed time after operation and exercise stress testing	e with ion as

List of Table(Cont.)

Table No.	Title	Page No.
Table (15):	Comparison between Patients with and RV dilatation as regard exercise stress te	
Table (16):	Comparison between patients with nor abnormal right ventricular function as exercise stress testing	s regard
Table (17):	Comparison between Patients with and aortopulmonary shunt as regard exercist testing	se stress
Table (18):	Comparison between patients with moderate PR and those with severe PR a exercise stress testing	s regard
Table (19):	Exercise stress testing of the patient with	out PR100
Table (20a):	Comparison between patients with and transanular patch as regard PR	
Table (20b):	Comparison between patients with and transanular patch as regard the degree of	

Introduction

Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease. Impairment in exercise tolerance after total repair of tetralogy of Fallot has been frequently reported and speculated to be due to variable causes including residual right ventricular outflow tract (RVOT) obstruction, branch pulmonary artery stenosis, pulmonary insufficiency, pulmonary pathology, and chronotropic incompetence (Anji et al., 2001).

Pulmonary regurgitation (PR) has been shown to be related to the use of transannular patch during RVOT reconstruction and aggressive infundibulectomy involving the pulmonary valve annulus. Adverse effects of PR include progressive dilatation of RV, reduced exercise capacity, arrhythmia and sudden death (*Bouzas et al.*, 2005).

The cardiac limitations in patients with tetralogy of Fallot are expected to improve to a great extent after total correction; however, there are references to decreased aerobic capacity after a successful repair, and among the possible reasons are residual lesions or surgical complications (*Ercisli et al.*, 2005).

Children who underwent total surgical repair of tetralogy of Fallot are usually well during daily life. However, formal exercise testing has repeatedly shown subnormal values for maximum oxygen uptake and also for ventilatory threshold in these patients group (Reybrouk et al., 2006).

Most patients surviving total correction of TOF have an excellent late clinical and hemodynamic outcome without functional disability, significant residual intracardiac defects, or need for cardiac medications and recent studies reported a very mild restrictive pulmonary function and mildly diminished cardiopulmonary exercise capacity as compared with healthy controls (*Izbicki et al.*, 2008).

A number of children have premature ventricular beats after repair of the tetralogy of Fallot. These beats are of concern in patients with residual hemodynamic abnormalities; 24-hr electrocardiographic (Holter) monitoring studies should be performed to be certain that occult short episodes of ventricular tachycardia are not occurring. Exercise studies may be useful in provoking cardiac arrhythmias that are not apparent at rest (Bernstein, 2008).

Aim of the Work

The aim of this study was to examine the exercise performance of young patients following the repair of Tetralogy of Fallot and to assess the influence of different variables related to the surgical repair on exercise testing.

Exercise Stress Testing In Children

Cardiovascular Response to Exercise

Introduction:

Exercise, a common physiological stress, can elicit cardiovascular abnormalities that are not present at rest, and it can be used to determine the adequacy of cardiac function (*Gerald et al.*, 2001).

Three types of muscular contraction or exercise can be applied as a stress to the cardiovascular system: isometric (static), isotonic (dynamic), and resistance (a combination of isometric and isotonic) (Paolo and David, 2008).

Isotonic exercise implies alternate rhythmic contraction (shortening) and relaxation (lengthening) of muscles against a nonfixed resistance. Isometric exercise involves muscular contraction against a fixed resistance with little muscle shortening. Clinical exercise testing can be done using either isotonic or isometric exercise. Usually, however, clinical exercise testing is done using isotonic forms of exercise, such as cycling, walking, and running (Paolo and David, 2008).

Isotonic exercise primarily provides a volume load to the left ventricle, and the response is proportional to the size of the working muscle mass and the intensity of exercise (*Paolo and David*, 2008).

Isometric exercise imposes greater pressure than volume load on the left ventricle in relation to the body's ability to supply oxygen. Cardiac output is not increased as much as in isotonic exercise because increased resistance in active muscle groups limits blood flow. Resistance exercise combines both isometric and isotonic exercise (*Paolo and David*, 2008).

Effect of Exercise on Cardiac Output:

In the early phases of exercise in the upright position, cardiac output is increased by an augmentation in stroke volume mediated through the use of the Frank-Starling mechanism and heart rate. The Frank-Starling mechanism means that the greater the heart muscle is stretched during filling, the greater is the force of contraction and the greater the quantity of blood pumped into the aorta (Guyton, 2006).