The Correlation between Left Ventricular Systolic Heart Failure Symptoms Severity and Tissue Doppler Indices

Thesis Submitted for partial fulfillment of master's degree in Cardiology

By Tamer Abdel Rahman El-Khayat MB. B.Ch

Supervised by

Professor Doctor Sameh Mohamed Shaheen

Professor of Cardiology
Faculty of Medicine - Ain Shams University

Professor Doctor Gamal Mohamed Aboul Nasr

Professor of Cardiology National Heart Institute

Doctor Ayman Mortada Abdel Moteleb

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2010 العلاقة بين شدة أعراض هبوط عضلة القلب والمعاملات الوظيفية للبطين الأيسر عن طريق الموجات فوق الصوتية و أشعة دوبلر الأنسجة

بحث الماجستير والأوعية الدموية

الحميد الخياط

/ شاهين الأوعية الدموية كلية – عين الأوعية لدموية معهد الأوعية لدموية / أيمن كلية – عين

> كلية عين 2010

الملخص العربي

مقدمة

إن الوظيفة الانقباضية للبطين الأيسر هي احدى العلامات الدالة على تطور حالة مرضى ضعف عضلة القلب, ويتم تقييم الكفاءة الانقباضية لعضلة القلب بواسطة أشعة الموجات الفوق صوتية و لكن هذه الطريقة لها بعض المعوقات و منها عدم دقة القياس.

ولكن تم مؤخرا استخدام الدوبلر لقياس توقيت و فترة انقباض و انبساط عضلة القلب وحركة الصمام الميترالي و الثلاثي الشرفات و معامل تاى و هو أحد المؤشرات الدقيقة الدالة على وظيفة القلب و كذالك نظام إم (M-Mode) للصمام الميترالي و الذي يعد أحد الوسائل التي توضح وظيفة عضلة القلب الانقباضية و لكن العلاقة بين نظام إم لحركة الصمام الميترالي و حالة المريض الاكلينيكية لم توضح حتى الآن.

تعد أشعة دوبلر الأنسجة إحدى طرق قياس سرعات أجزاء القلب المختلفة و ربما تكون هذه الطريقة أدق من أشعة الموجات فوق الصوتية التقليدية لقياس اختلال وظيفة القلب الانقباضية و الانبساطية على السواء.

وفى هذه الدراسة سوف نختبر مدى دقة العلاقة بين الحالة الإكلينيكية لمرضى ضعف عضلة القلب و أشعة دوبلر الأنسجة.

الهدف من الدراسة

الهدف من هذه الدراسة هو الربط بين مدى شدة أعراض مرضى ضعف وظيفة البطين الأيسر الانقباضية و و نتائج أشعة دوبلر الأنسجة.

طريقة البحث

فى هذه الدراسة تم فحص 50 مريض من مرضى ضعف وظيفة البطين الأيسر الانقباضية من خلال عيادة ضعف عضلة القلب بمعهد القلب القومى و يشمل الفحص المرضى المصابين بضعف وظيفة البطين الأيسر الانقباضية بنسبة تقل عن أو تساوى 40% بأشعة الموجات الفوق صوتية و لم يشمل الفحص المرضى المصابين بذبذبة أذينية , امراض الصمامات , الذبحة الصدرية الغير مستقرة , هبوط وظيفة عضلة القلب الحاد, احتشاء عضلة القلب فى غضون شهر و المرضى الذين يصعب تصويرهم بأشعة الموجات فوق الصوتية.

فى هذا البحث تم ما يلى لكل مريض

- 1. تحدید نسبة ضعف وظیفة عضلة القلب بواسطة تقسیم اتحاد قلب نیویورك.
- 2. تحديد الحالة الإكلينيكية لضعف وظيفة عضلة القلب بواسطة أسئلة تحديد مستوى النشاط لأمراض القلب
 - 3. اختبار المشى لمدة 6 دقائق.
- 4. موجات فوق صوتية للقلب لتحديد أبعاد القلب الداخلية و القدرة الانقباضية لعضلة القلب.
 - 5. أشعة دوبلر الأنسجة للدائرة حول الصمام الميترالي.
- 6. التحليل الاحصائى تم عن طريق معامل التكافوء الاحصائى لكل من الحالة الاكلينيكية لضعف وظيفة عضلة القلب بواسطة تقسيم اتحاد قلب نيويورك و مستوى النشاط لأمراض القلب ضد كل من أبعاد القلب الداخلية و القدرة الانقباضية لعضلة القلب و كذالك أشعة دوبلر الأنسجة حول الصمام الميترالي.

النتائج:

أظهرت نتائج الدراسة أن كل من نسبة وظيفة عضلة القلب بواسطة تقسيم رابطة قلب نيويورك و تحديد الحالة الإكلينيكية لضعف وظيفة عضلة القلب بواسطة أسئلة تحديد مستوى النشاط لأمراض القلب و كذلك اختبار المشى لمدة 6 دقائق يترابط كل منهم بشكل جيد مع الأخر و يمكن استخدام أى منهم فى تحديد مستوى أعراض هبوط عضلة القلب.

أشعة دوبلر الأنسجة حول الصمام الميترالي و خصوصا سرعة أنسجة عضلة القلب حول الصمام الميترالي عند الانقباض تتناسب عكسيا مع كل من نسبة وظيفة عضلة القلب بواسطة تقسيم اتحاد قلب نيويورك و تحديد الحالة الإكلينيكية لضعف وظيفة عضلة القلب بواسطة أسئلة تحديد مستوى النشاط لأمراض القلب وهذه العلاقة ثابتة في حالة ضعف عضلة القلب بأسباب غير متعلقة بقصور الشرايين التاجية للقلب.

إختبار تحيد مستوى النشاط الخاص بمرضى القلب 1. هل تستطيع نزول 8

اذا كانت اجابتك بنعم اذهب الى السؤال رقم 2

اذا كانت اجابتك بلا اذهب الى السؤال رقم 4

2. هل تستطیع حمل ای شیء و الصعود 8

• هل تستطيع إكمال الجماع بدون

هل تستطیع حراثه الأرض أو ازالة الحشائش الضارة یدویا ؟
 هل تستطیع السیر لمسافة 6 كیلومترات (12 محطة أتوبیس)

اذا كانت اجابتك بنعم اذهب الى السد 3 اذا كانت اجابتك بلا فأنت في المستوى الثالث برجاء الذهاب للسؤال رقم 4

- 3. هل تستطيع حمل ما يقرب من 11 كيلوجرام و الصعود 8
 - هل تستطیع حمل ما یقرب من 36 کیلوجرام ؟
 - هل تستطيع استخدام الجاروف في حفر التربة؟
- هل تستطيع السير لمسافة 8 كيلومتر (16 محطة أتوبيس)
 - 4. هل تستطيع الاستحمام بدون توقف؟ أو
 - هل تستطيع اعدا
 - هل تستطيع مسح الأرضيات؟
 - هل تستطيع نشر الغسيل ؟
 - هل تستطيع تنظيف النوافذ؟
- هل تستطیع السیر لمسافة 4 کیلومتر (8 محطات أتوبیس)

اذا كانت اجابتك بلا اذهب الى السؤال رقم 5

5. هل تستطيع ارتداء ملابسك بدون توقف ؟

List of Figures

Figure No.	Comment	Page No.
1	Graphs show relations between left ventricular end-diastolic area (left), end-systolic area (middle), and percent change in cavity area (right).	42
2	Parasternal long-axia two-dimensional and M-mode echocardiogram images from a normal patient (left) and a patient with dilated cardiomyopathy (DCM) (right).	43
3	Data from V-HeFT VA Cooperative Studies Group.	47
4	Example of tissue Doppler imaging.	55
5	There is a highly significant positive correlation between NYHA function class and SASFC (r= 0.726) [P< 0.001]	64
6	There is a significant negative correlation between NYHA classification and Sm wave in TDI [p=0.027]	65
7	There is a significant negative correlation between Specific Activity Scale function Class and Sm wave in TDI [P=0.033]	66
8	Non significant correlation between Six minutes walking test and Sm wave in TDI	67
9	Demonstration of ischemic versus non ischemic cardiomyopathy patients involved in the study	68
10	There is strong negative correlation between NYHA classification and Sm wave velocity in DCM group [P=0.010]	70
11	There is a significant negative correlation between specific activity scale and Sm wave velocity in DCM group [P=0.010].	71

List of Tables

Table No.	Comment	Page No.
1	Criteria for diagnosis of heart failure from	5
	several studies	
2	Causes of dilated cardiomyopathy	15
3	A classification of the genetic causes of heart	16
	failure affecting the cardiac myocyte	
4	Genetic mutations linked to dilated	17
	cardiomyopathy	
5	Some genetic mutations associated with	18
	hypertrophic cardiomyopathy	
6	Causes of restrictive cardiomyopathy	19
7	NYHA classification	32
8	Specific activity scale questionnaire	34
9	The Duke Activity Status Index (DASI)	35
10	Minnesota Living with Heart Failure	36
	Questionnaire	
11	Prognostic significance of 6-minutes corridor	38
	walk test.	
12	Patient's demographic data and characteristics	62
13	Echo and TDI patients' characteristics	63
14	Master table	72

List of Abbreviations

6MWT Six minutes walking test

A'm Late mitral annular diastolic velocity

BNP Brain nutriuretic peptide
CAD Coronary artery disease
CHF Chronic heart failure

CMRI Cardiovascular magnetic resonance imaging CONSENSUS trail Cooperative North Scandinavian Enalapril

Survival Study

DASI Duke Activity Status Index DCM Dilated cardiomyopathy

EF Ejection fraction

E'm Early diastolic mitral annular velocity

FS Fraction shortening

GRACE registry Global Registry of Acute Coronary Events

HIV Human Immunodeficiency Virus

ICM Ischemic cardiomyopathy
IVCT IsoVolumic Contraction Time
IVRT IsoVolumic Relaxation Time

IVST Interventricular septal wall thickness

KCCQ Kansas City Cardiomyopathy Questionnaire

LA Left atrium

LAVI LA volume index

LHFQ Minnesota Living with Heart Failure

Questionnaire

LV Left Ventricle

LVD36 Left Ventricular Dysfunction quality of life

questionnaires

LVEDD LV end-diastolic diameter
LVEF LV ejection fraction
LVESD LV end-systolic diameter

MADIT-II Multicenter Autonomic Defibrillator

Implantation Trial II

MI Myocardial infarction

MUGA MUltiple Gated Acquisition scan MVG Myocardial velocity gradient

NRMI-2 Second National Registry of Myocardial

Infarction

List of Abbreviations (Cont.)

NYHA New York Heart Association

PW Posterior wall

PWT Posterior wall thickness

RV Right ventricle

RVMI RV myocardial infarction SAS Specific activity scale

SASFC Specific activity scale function class

SAVE trail

The protocol of the Survival and Ventricular

Enlargement

Sm Systolic mitral annular motion

SOLVD Studies of Left Ventricular Dysfunction

TDI Tissue Doppler Imaging

VALIANT registry Valsartan in Acute Myocardial Infarction

V-HeFT Vasodilator Heart Failure Trial

VO₂ oxygen consumption VTI Velocity-time integral

Table of content

	Page No.
Abbreviations list	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the work	3
Review of literature	
Heart Failure Epidemiology and Etiology	4
Heart Failure Symptoms Assessment	28
Noninvasive Imaging Techniques for Heart Failure Assessment.	41
Patients and methods	58
Results	62
Discussion	74
Conclusion	77
Study Limitations	75
Summary	76
References	80
Arabic summery	

The Correlation between Left Ventricular Systolic Heart Failure Symptoms Severity and Tissue Doppler Indices

By

Tamer Abdel Rahman El-Khayat

Abstract

Heart failure is a complex clinical syndrome that arises secondary to abnormalities of cardiac structure and/or function (inherited or acquired) that impair the ability of the left ventricle to fill or eject blood. (ACC/AHA 2009 guideline update)

Data on the incidence of heart failure have consistently demonstrates that heart failure is a common problem, and one that increases markedly with advancing age. (*Levy, et al; 2002*), the prevalence of heart failure is also increasing as the population ages and the proportion of the population over the age of 65 increases. (*Butler, et al; 1997*)

Ischemic heart disease is currently the most common etiology of chronic heart failure (CHF) in the United States. (*Mariell, et al; 2003*), Primary valvular disease accounts for 7% of cardiac failure cases, and the majority involves disease of the left-sided cardiac valves. (*Ishihara, et al; 1992*), Primary disease of the cardiac muscle can present in a number of forms, three basic forms of functional impairment that have been described, Dilated cardiomyopathy (DCM), Hypertrophic cardiomyopathy (HCM), Restrictive cardiomyopathy (RCM) (*ACC/AHA 2009 guideline update*)

There are two types of heart failure patient's exercise performance: subjective and objective. The subjective methods include NYHA classification, various activity scales, and quality of life specific questionnaires. The objective methods include various modes of exercise testing to document submaximal exercise capacity (6-minute corridor walk test and anaerobic threshold analysis), as well as maximal exercise capacity (exercise time and maximal oxygen consumption measurement). (Mariell, et al; 2003)

A variety of noninvasive imaging modalities are available for assessment of patients with heart failure. These include echocardiography, TDI, radionuclide imaging, and cardiovascular magnetic resonance imaging (CMRI). (*Peter, et al;* 2007)

The subjects of this study were 50 patients with symptomatic left ventricular systolic dysfunction (EF 40.0% by echocardiography) attending the heart failure outpatient clinic at the National Heart Institute.

The following patients criteria were excluded, atrial fibrillation, End stage Valvular heart disease, unstable angina pectoris, acute heart failure, recent myocardial infarction within 1 month, and technically inadequate echocardiographic images.

For each patient the following had been done, Functional severity of heart failure according to NYHA classification, Specific activity scale test (*Goldman*, et al; 1981),

Six minutes walking test, Conventional echocardiographic examination, and TDI for the mitral annulus.

Statistical analysis: was done using SPSS version 17 data expressed as mean \pm standard deviation correlation between variables was done using the Pearson correlation and spearman's rho for nonparametric correlations, significance was considered at P value <0.05.

The correlation between variables was done using correlation coefficient (r); examples are NYHA class, specific activity scale function class & six minutes walking distance in the X arm value versus echocardiography parameters as LVEF, LVESD, LVEDD and tissue Doppler indices as average velocity peak systolic velocity (Sm), early (Em) and late (Am) diastolic velocities in the Y arm value.

In our study there was no significant correlation between heart failure symptoms severity as assessed by NYHA function class, specific activity scale, 6 minutes walking test and echo parameters as LVEF, LVEDD, LVESD even though when the study subjects were subdivided into ICM group and DCM group still there was no significant correlation between NYHA classification and echo parameters in both groups.

The results of this study was concordant with (Cohen, et al; 2002) & (smart, et al; 2005) which showed that EF and LV dimensions do not correlate with HF symptoms, exercise capacity, or myocardial oxygen consumption, In spite of that EF and LV dimensions provide crucial prognostic information (Vasan, et al;1999)

In our study the Specific Activity Scale performs satisfactory even when translated from English to Arabic, and there was no studies correlates specific activity scale to echo parameters.

In our study there was no significant correlation between 6 minutes walking test and both echo or TDI parameters and this confirmed by a study by (*Alahdab*, *et al*; 2009) on 200 patients found that there was no correlation between 6MWT distance walked and LVEF.

For the first time to our knowledge, our study demonstrate that there was a significant negative correlation between systolic mitral annular velocity (Sm wave) and both NYHA function class and specific activity scale function class, however, there was no significant correlation with six minutes walking test, and when the study subjects were divided into ICM group and DCM group this correlations persist in the DCM group and lost in the ICM group.

In our study there was no significant correlation between systolic heart failure symptoms severity and E'm and there was no previous studies correlating both variables, although E'm has the strongest impact on cardiac mortality among the TDI variables in patients with impaired LV systolic function, (*Wang et al*; 2005)

In our study there was no correlation between A'm and systolic heart failure symptoms severity and there was no previous studies correlating the two variables.

Introduction

Heart failure is a complex clinical syndrome that arises secondary to abnormalities of cardiac structure and/or function (inherited or acquired) that impair the ability of the left ventricle to fill or eject blood. The cardinal manifestations of heart failure are dyspnea and fatigue. These abnormalities may impair the functional capacity and quality of life of affected individuals; however, they do not necessarily dominate the clinical picture concurrently (*ACC/AHA*, 2009).

Furthermore, many of the typical signs and symptoms of heart failure are not directly attributable to the cardiac abnormalities that occur in the failing heart, but rather arise secondarily to abnormalities that occur in remote organs (e.g., kidney) or tissues (e.g., skeletal muscle). The dysfunction that occurs in these organs and tissues cannot be explained solely by decreased perfusion pressure, suggesting that other systemic processes (e.g. neurohormonal activation) must contribute to the syndrome of heart failure (*Peter et al.*, 2007).

Although heart failure was once thought to arise primarily in the setting of depressed left ventricular (LV) ejection fraction (EF), epidemiological studies have shown that approximately 50 percent of patients who develop heart failure have a normal or preserved EF. Accordingly, patients may be broadly categorized as having heart failure with depressed EF (commonly referred to as systolic failure), or having heart failure with a normal EF or heart failure with a preserved EF (sometimes referred to as "diastolic failure"). Epidemiological studies have also shown that patients may have significant abnormalities of LV contraction and relaxation and yet have no symptoms, in which case these patients are referred to as having asymptomatic heart failure (*Peter et al.*, 2007).

Introduction and Aim of The Work

Circulatory failure is not synonymous with heart failure because various noncardiac conditions (e.g., hemorrhagic shock) can lead to circulatory collapse while cardiac function is preserved. The terms *backward failure* and *forward failure* are largely historical terms that do not take into account the full spectrum of pathophysiological changes that contribute to ventricular remodeling and disease progression in patients with chronic heart failure, and thus have largely been abandoned (*Peter et al.*, 2007).