The Role of Ultrasound and Power Doppler in Assessment of Inflamatory Activity of Shoulder and Hip Joints in Patients with Rheumatoid Arthritis

THESIS

Submitted in Partial Fulfillment of the Requirement for the

M.Sc.

Degree in Internal Medicine

By

Rasha Sobh Mohamed

M.B.B.Ch

Supervised by

Prof. Dr. Ebtesam Zakaria

Professor of Internal Medicine
Faculty of Medicine - Cairo University

Dr. Manal Adly Aziz

Lecturer of Internal Medicine
Faculty of Medicine - Cairo University

Dr. Manal Halim Wahba

Lecturer of Radiology
Faculty of Medicine - Cairo University

Faculty of Medicine Cairo University 2010

The Role of Ultrasound and Power Doppler in Assessment of Inflammatory Activity of Shoulder and Hip Joints in Patients with Rheumatoid Arthritis

Abstract:

Objective:

To compare the clinical assessment of overall inflammatory activity of the shoulder and hip joints being hidden joints and cannot be assessed clinically in patients with rheumatoid arthritis (RA) with ultrasonography (US) and power Doppler ultrasonography (PDUS).

Methods:

Thirty patients diagnosed as RA in addition to ten normal controls age and sex matched will be subjected to full history taking, thorough clinical evaluation and lab assessment for: .CBC .ESR .CRP .Liver and kidney functions then Ultrasound and power Doppler study of the shoulder and hip joints done by a rheumatologist.

Results:

High frequency ultrasonography (US) has greatly improved musculoskeletal imaging in rheumatology; several studies have demonstrated that high frequency US is accurate for detecting joint effusion and synovitis compared with magnetic resonance imaging (MRI) and direct arthroscopic visualization. US are more sensitive and reproducible than clinical evaluation in assessing joint inflammation.

Power Doppler (PD) US is a new technique of colour Doppler that improves the sensitivity to detect flow from small vessels and low velocity flow at the microvascular level. The PD signal correlates highly with local clinical evaluation of joint inflammatory activity in the knee, metacarpophalangial (MCP) and interphalangeal joints of patients with RA and other inflamatory arthropathies. Recent studies have shown that PD synovial vascularity correlates highly with histologically proved knee pannus and with the degree of synovial vascularisation of the knee and hip.

Conclusion:

PDUS detects indirect signs of increased vascularization associated with soft tissue musculoskeletal inflammatory and infectious diseases and enthesitis and spondyloarthropathies.

KEY WORDES

Ultrasound _ assessment _ activity

Contents

1) Abstract2
2) Dedication5
3) Acknowledgment6
4) List of abbreviations7
5) List of figs
6) List of tables9
7) Introduction and aim of work16
8) Review of literature17
9) Patients and methods87
10) Discussion142
11) Summary151
12) References 154

Dedication

I give this presentation as a gift to the souls of my mother and father for their great support and love and they were wishing this day so much and I am sure they are so happy now... May God bless them both.

Also I want to thank my husband and children for their patience and support.

Great thanks to my sisters for their encouragement.

Acknowledgment

- > It's a great honor for me to be supervised by my great prof. Dr. Ebtesam Zakaria and many thanks for her support
- Iam honored to be supported by Dr. Manal Adly and many thanks for her great help and following for this progress.
- > Iam honored to work with Dr. Manal Halim and many thanks for her time and technical support.
- And thanks to all the staff member of Internal Medicine and Rheumatology clinics for allowing us to study their patients.

List of abbreviations:

- \Rightarrow **RA** rheumatoid arthritis.
- ⇒ **PDUS** power Doppler ultrasonography.
- ⇒ **ESR** erythrocyte sedimentation rate.
- \Rightarrow **CRP** C reactive protein.
- ⇒ MRI magnetic resonance imaging.
- \Rightarrow TNF- α tumor necrosis factor alpha
- ⇒ MHC Major histocompatibility complex
- ⇒ ACPA anti-citrullinated protein antibodies
- \Rightarrow **ANA** antinuclear antibody
- ⇒ **DMARD** disease-modifying anti-rheumatic drug
- ⇒ VEGF vascular endothelial growth factor
- ⇒ SI signal intensity
- ⇒ **DIP** distal interphalangeal joint
- ⇒ **PIP** proximal interphalangeal joint
- ⇒ MCP Metacarpophalangeal joint
- ⇒ **RF** Rheumatoid factor
- ⇒ Anti-CCP cyclic citrullinated peptide
- \Rightarrow **SLE** Systemic lupus erythematosus
- ⇒ **EBV** Epstein-Barr virus
- ⇒ **HHV-6** Human Herpes Virus 6
- ⇒ CTS carpal tunnel syndrome
- \Rightarrow **CW** continuous wave
- ⇒ **OMERACT** Outcome Measures in Rheumatology Clinical Trials
- \Rightarrow VEGF vascular endothelial growth factor

List of Figs:

(Fig. 1)	р.103
Comparison between US & CR in detection	
of erosions, cysts and tears in the Rt. shoulder	
(Fig. 2)	р.103
Comparison between US & CR in detection	
of erosions, cysts and tears in the Lt. shoulder	
(Fig. 3)	р.122
Comparison between US & CR in detection	
of erosions and cysts in the Rt. hip	
(Fig. 4)	р.122
Comparison between US & CR in detection	
of erosions and cysts in the Lt. hip	
(Fig. 5)	p.123
Relation between US detected erosions & limitation	
of movements of the affected shoulder and hip joints	
(Fig. 6)	p.123
Relation between US detected synovitis & limitation	
of movements of the affected shoulder and hip joints	
(Fig. 7)	p.124
Relation between US detected subchondral cysts& limitation	
of movements of the affected shoulder and hip joints	
(Fig. 8)	p.124
Relation between US detected tenosynovitis& limitation	
of movements of the affected shoulder and hip joints	
(Fig. 9)	p.134
Relation between US detected bursitis & limitation	
of movements of the affected shoulder and hip joints	
(Fig. 10)	р.134
Relation between US detected rotator cuff tear & limitation	-

List of Tables:

Table (1)	p.94
Demographic features of patients under study	
Table (2)	р.95
Clinical features of patients under study	
Table (3)	р.96
Clinical examination of the shoulder and hip joints	
among patients under study	
Table (4)	p.97
Rt shoulder limitation	
Table (5)	p.97
Lt shoulder limitation	
Table (6)	p.97
Rt hip limitation	
Table (7)	р.98
Lt hip limitation	
Table (8)	р.98
Laboratory features of patients under study	
Table (9)	р.98
Concerning the Rheumatoid factor	
Table (10)	р.99
Frequency of erosions detected in the study group	
by Conventional Radiology versus Ultrasonography	
Table (11)	p.100
Frequency of subchondral cysts detected in the study group	
by Conventional Radiology versus Ultrasonography	
Table (12)	p.101
Frequency of rotator cuff tear detected in the study group	
by Conventional Radiology versus Ultrasonography	

Table (13)	p.105
Detection of vasculature by Power Doppler in Rt. shoulder	
Table (14)	p.105
Detection of vasculature by Power Doppler in Lt. shoulder	
Table (15)	p.106
Detection of vasculature by Power Doppler in Rt. hip	
Table (16)	p.106
Detection of vasculature by Power Doppler in Lt. hip	
Table (17)	p.107
Relation between US detected erosions	
in Rt. shoulder & various clinical parameters	
Table (18)	p.107
Relation between US detected erosions	
in Lt. shoulder & various clinical parameters.	
Table (19)	p.108
Relation between US detected erosions	
in Rt. hip & various clinical parameters.	
Table (20)	p.108
Relation between US detected erosions	
in Lt. hip & various clinical parameters	
Table (21)	p.109
Relation between US detected synovitis	
in Rt. shoulder & various clinical parameters	
Table (22)	p.109
Relation between US detected synovitis	
in Lt. shoulder & various clinical parameters	
Table (23)	p.110
Relation between US detected synovitis	
in Rt. hip & various clinical parameters	
Table (24)	p.110
Relation between US detected synovitis	

in Lt. hip & various clinical parameters	
Table (25)	p.111
Relation between US detected subchondral cysts	
in Rt. shoulder & various clinical parameters.	
Table (26)	p.111
Relation between US detected subchondral cysts	
in Lt. shoulder & various clinical parameters	
Table (27)	p.112
Relation between US detected subchondral cysts	
in Rt. hip& various clinical parameters.	
Table (28)	p.112
Relation between US detected subchondral cysts	
in Lt. hip & various clinical parameters.	
Table (29)	p.113
Relation between US detected tenosynovitis	
in Rt. shoulder& various clinical parameters.	
Table (30)	p.113
Relation between US detected tenosynovitis	
in Lt. shoulder& various clinical parameters.	
Table (31)	p.114
Relation between US detected tenosynovitis	
in Rt. hip& various clinical parameters.	
Table (32)	p.114
Relation between US detected tenosynovitis	
in Lt. hip & various clinical parameters.	
Table (33)	p.115
Relation between US detected bursitis	
in Rt. shoulder& various clinical parameters	
Table (34)	p.115
Relation between US detected bursitis	
in Lt_shoulder& various clinical parameters	

Table (35)	p.116
Relation between US detected bursitis	
in Rt. hip& various clinical parameters.	
Table (36)	р.116
Relation between US detected bursitis	
in Lt. hip& various clinical parameters	
Table (37)	p.117
Relation between US detected rotator cuff tear	
in Rt. shoulder & various clinical parameters	
Table (38)	p.117
Relation between US detected rotator cuff tear	
in Lt. shoulder & various clinical parameters	
Table (39)	р.118
Relation between US detected erosions & limitation	
of movements of the affected shoulder and hip joints	
Table (40)	р.119
Relation between US detected synovitis & limitation	
of movements of the affected shoulder and hip joints	
Table (41)	р.119
Relation between US detected subchondral cysts& limitation	
of movements of the affected shoulder and hip joints	
Table (42)	p.120
Relation between US detected tenosynovitis& limitation	
of movements of the affected shoulder and hip joints	
Table (43)	р.120
Relation between US detected bursitis & limitation	
of movements of the affected shoulder and hip joints	
Table (44)	р.120
Relation between US detected rotator cuff tear & limitation	
of movements of the affected shoulder and hip joints	

Table (45)	p.121
Relation between US detected pathology	
& serum rheumatoid factor	
Table (46)	р.125
Comparison of CR with US in assessing erosions	
of the Rt. shoulder joint	
Table (47)	p.126
Comparison of CR with US in assessing erosions	
of the Lt. shoulder joint	
Table (48)	р.126
Comparison of CR with US in assessing erosions	
of the Rt. hip joint	
Table (49)	р.127
Comparison of CR with US in assessing erosions	
of the Lt. hip joint	
Table (50)	р.127
Comparison of CR with US in assessing subchondral cysts	
of the Rt. shoulder joint	
Table (51)	p.128
Comparison of CR with US in assessing subchondral cysts	
of the Lt. shoulder joint	
Table (52)	р.129
Comparison of CR with US in assessing subchondral cysts	
of the Rt. hip joint	
Table (53)	р.129
Comparison of CR with US in assessing subchondral cysts	
of the Lt. hip joint	
Table (54)	р.130
Comparison of CR with US in assessing rotator cuff tear	
of the Rt. shoulder joint	

Table (55)	p.131
Comparison of CR with US in assessing rotator cuff tear	
of the Lt. shoulder joint	
Table (56)	p.131
Correlations between vasculature by Power Doppler	
in Rt. shoulder joint with various clinical parameters	
Table (57)	p.132
Correlations between vasculature by Power Doppler	
in Lt. shoulder joint with various clinical parameters	
Table (58)	p.133
Correlations between vasculature by Power Doppler	
in Rt. hip joint with various clinical parameters	
Table (59)	p.133
Correlations between vasculature by Power Doppler	
in Lt. hip joint with various clinical parameters	