Relationship between Anti-Müllerian Hormone level in women with polycystic ovary syndrome and response to ovulation induction with clomiphene citrate

Thesis Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

Presented by

Mohammed Mostafa Ahmed Mostafa
M.B., B.Ch. (2007)

Faculty of Medicine – Cairo University

Under Supervision of

Prof. Dr. Osama Saleh El-Kady

Professor of Obstetrics and Gynecology Ain-Shams University

Dr. Mohamed Samir Sweed

Lecturer of Obstetrics and Gynecology Ain-Shams University

> Faculty of Medicine Ain Shams University Cairo-2014

Acknowledgement

First of all, I thank ALLAH,

Then, I would like to express my great thankfulness and appreciation to **Prof. Dr. Osama Saleh El-Kady**, Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain-Shams University, for his help, encouragement, patience and support throughout this work.

I also would like to show my gratitude and thankfulness to **Dr. Mohamed Samir Sweed,** Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain-Shams University, for his effective scientific supervision and precious assistance.

Last but not least, I thank all my family for their patience, support and understanding.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vii
Protocol	I
Introduction	1
Aim of the Work	6
Review of Literature	
Polycystic Ovary Syndrome	7
Anti-Müllerian Hormone	48
Patients and Methods	61
Results	80
Discussion	104
Summary and Conclusions	119
Recommendations	124
References	125
Arabic Summary	•••••

List of Abbreviations

ACTH	Adrenocorticotropic hormone	
ACVR1	Activin A receptor, type I	
AE-PCOS Society	Androgen Excess and Polycystic	
	Ovary Syndrome Society	
AES	Androgen Excess Society	
AFC	Antral follicle count	
Alk	Activin receptor-like kinase	
AMH	Anti-Müllerian hormone	
AMHR2	Anti-Müllerian hormone specific type	
	2 receptor	
ANOV	Anovulation	
ART	Assisted Reproductive Techniques	
ASRM	American Society for Reproductive	
	Medicine	
AUC	Area under the curve	
В	Regression coefficient	
BMI	Body mass index	
BMPR	Bone morphogenetic protein receptor	
BMPs	Bone morphogenetic proteins	
BSA	Bovine serum albumin	
CAH	Congenital adrenal hyperplasia	
CC	Clomiphene Citrate	
CI	Confidence Interval	
CL	Corpus luteum	
CNS	Central nervous system	
DF	Degree of freedom	
DHEA-S	Dehydroepiandrosterone sulfate	
DHT	Di-hydro-testosterone	

DNA	Deoxyribonucleic acid	
$\mathbf{E_1}$	Estrone	
$\mathbf{E_2}$	Estradiol	
ELISA	Enzyme-linked immunosorbent assay	
ESHRE	European Society of Human	
	Reproduction and Embryology	
FSH	Follicle-stimulating hormone	
GH	Growth hormone	
GnRH	Gonadotropin-releasing hormone	
GnRH-A	Gonadotrophin - releasing hormone	
	analogue	
HA	Hyperandrogenism	
HCG	Human chorionic gonadotropin	
HMG	Human menopausal gonadotropin	
HRP	Horseradish peroxidase	
IBM	International Business Machines	
	Corporation	
ICSI	Intra-cytoplasmic sperm injection	
IGF-1	Insulin-like growth factor-1	
IGFBP-1	Insulin - like growth factor-binding	
	protein-1	
IgG	Immunoglobulin G	
IGT	Impaired glucose tolerance	
IR	Insulin resistance	
IV	Intravenous	
IVF	In Vitro Fertilization	
IVM	In Vitro Maturation	
J	Youden index	
LH	Luteinizing hormone	
LOD	Laparoscopic Ovarian Drilling	

MHPG	3-Methoxy-4-hydroxyphenylglycol	
MIS	Müllerian-inhibiting substance	
MS	Metabolic syndrome	
N	Number	
NIDDM	Non - insulin - dependent diabetes	
	mellitus	
NIH	National Institutes of Health	
OGTT	Oral glucose tolerance test	
OHSS	Ovarian hyperstimulation syndrome	
OR	Odds ratio	
PCO	Polycystic ovaries	
PCOD	Polycystic ovary disease	
PCOM	Polycystic ovary morphology	
PCOS	Polycystic ovary syndrome	
PI	Pulsatility index	
P-value	Probability value	
RI	Resistance index	
ROC	Receiver operating characteristic	
R-Smads	Receptor - regulated small mothers	
	against decapentaplegic proteins	
SC	Subcutaneous	
S/D	Systolic/Diastolic	
SD	Standard deviation	
SE	Standard error	
SHBG	Sex hormone-binding globulin	
SMADs	Small mothers against decapentaplegic	
	proteins	
SPSS	Statistical Package for the Social	
	Sciences	
TGF-β	Transforming growth factor-beta	
TMB	Tetramethylbenzidine	
TSH	Thyroid-stimulating hormone	
U/S	Ultrasound	

List of Tables

Table No.	Title	Page No.
Table (1):	Definition of PCOS according	9
	to available criteria.	
Table (2):	Ranges of AMH.	51
Table (3):	Typical calibration curve.	77
Table (4):	Age distribution of the study population (n=100).	80
Table (5):	Age groups of the study population (n=100).	80
Table (6):	Body mass index (BMI) of all patients (n=100).	81
Table (7):	Cycle regularity and frequency among all patients (n=100).	82
Table (8):	Type of infertility among all patients (n=100).	82
Table (9):	Hirsutism score among all PCOS patients (n=100).	83
Table (10):	Ultrasonic morphology of PCOS among all patients (n=100).	83
Table (11):	Response to ovulation induction with Clomiphene Citrate among all PCOS patients (n=100).	84
Table (12):	Comparison of PCOS patients characteristics in ovulated women and those with undetectable ovulation till day 35 regarding age and BMI.	85

Table No.	Title	Page No.
Table (13):	Comparison of menstrual history in ovulated women and those with undetectable ovulation till day 35.	86
Table (14):	Comparison of type and duration of infertility in ovulated women and those with undetectable ovulation till day 35.	87
Table (15):	Comparison of PCOS features in ovulated women and those with undetectable ovulation till day 35 regarding hirsutism score and PCOS morphology by U/S.	88
Table (16):	Comparison of the hormonal profile in ovulated women and those with undetectable ovulation till day 35.	89
Table (17):	Comparison of AMH level in ovulated women and those with undetectable ovulation till day 35.	90
Table (18):	Receiver - operating characteristic (ROC) curve analysis for the value of AMH level in prediction of successful ovulation.	92
Table (19):	Percentage of women with AMH level > 3.6 ng/mL or ≤ 3.6 ng/mL among those who had successful ovulation and those who did not ovulate till day 35.	94

Table No.	Title	Page No.
Table (20):	Ovulation day and progesterone	96
	level in ovulated women.	
Table (21):	Correlation between AMH	96
	level and post-ovulation	
	progesterone level.	
Table (22):	Incidence of ovulation in	98
	women with AMH level ≤ 3.6	
	ng/mL and those with AMH	
	level $> 3.6 \text{ ng/mL}$.	
Table (23):	Multivariable logistic	100
	regression model for	
	determinants of successful	
	ovulation.	
Table (24):	Kaplan-Meier analysis for the	102
	time to ovulation in women	
	with AMH level ≤ 3.6 ng/mL	
	and those with AMH level >	
	3.6 ng/mL.	

List of Figures

Figure No.	Title	Page No.
Figure (1):	Gross picture of polycystic ovary.	15
Figure (2):	Microscopic picture of polycystic ovary.	16
Figure (3):	Ultrasound picture of a typical polycystic ovary.	34
Figure (4):	Model of AMH action in the ovary.	53
Figure (5):	The modified Ferriman-Gallwey scoring system for hirsutism.	67
Figure (6):	Box plot showing AMH level in women with successful ovulation and those with undetectable ovulation till day 35.	91
Figure (7):	Receiver - operating characteristic (ROC) curve for the value of AMH level in prediction of successful ovulation.	93
Figure (8):	Percentage of women with AMH level > 3.6 ng/mL or \leq 3.6 ng/mL among those who had successful ovulation and those who did not ovulate till day 35.	95
Figure (9):	Scatter plot showing the correlation between AMH level and post-ovulation progesterone level.	97

Figure No.	Title	Page No.
Figure (10):	Incidence of ovulation in women with AMH level ≤ 3.6 ng/ml and those with AMH level > 3.6 ng/ml.	99
Figure (11):	Kaplan-Meier curve for the time to ovulation in women with AMH level ≤ 3.6 ng/mL and those with AMH level > 3.6 ng/mL.	103

Relationship between Anti-Müllerian Hormone level in women with polycystic ovary syndrome and response to ovulation induction with clomiphene citrate

Thesis Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

Presented by

Mohammed Mostafa Ahmed Mostafa

M.B., B.Ch. (2007) Faculty of Medicine – Cairo University

Under Supervision of

Prof. Dr. Osama Saleh El-Kady

Professor of Obstetrics and Gynecology Ain Shams University

Dr. Mohamed Samir Sweed

Lecturer of Obstetrics and Gynecology Ain Shams University

> Faculty of Medicine Ain Shams University Cairo-2013

Introduction

Infertility is defined as one year of unprotected coitus without conception. It affects approximately 10-15% of couples in the reproductive age group which makes it an important component of the practices of many physicians (*Barbieri*, 2000).

Infertility is a common problem, approximately one sixth of marriages are involuntarily childless. Studies of populations of patients with infertility indicates that approximately 10-25% have unexplained infertility, 20-30% ovulatory dysfunction, 20-25% tubal damage, 10-50% sperm dysfunction, 5-10% endometriosis, 5% cervical mucus problems, and 5% coital dysfunction (*Jacobs and Balen, 2003*).

Ovulatory dysfunction is observed in approximately 15% of all infertile couples and 40% of all infertile women (ASRM, 2002). Causes of ovulatory dysfunction include hypothyroidism, hyperprolactinemia, polycystic ovary disease, eating disorders, obesity, extremes of weight loss or exercise, and advancing maternal age (Greene and O'Keane, 2000).

The definition of polycystic ovary syndrome (PCOS) has evolved over the past several years (*Rosenfield*, 2007). PCOS was originally described in 1935 by Stein and Leventhal who reported a group of women with amenorrhea and polycystic ovaries, of whom some were hirsute and/or obese (*Stein and Leventhal*, 1935).

In 1990, a National Institutes of Health (NIH) consensus conference defined PCOS as a combination of hyperandrogenism, menstrual dysfunction (oligo and/or anovulation), and exclusion of known disorders such as congenital adrenal hyperplasia (CAH) leading to the above (Zadawski and Duanif, 1992). This definition was broadened at the 2003 Rotterdam consensus workshop. The revised definition included two of the following three criteria, with exclusion of other medical conditions: oligomenorrhea and/or anovulation; signs of either clinical or biochemical hyperandrogenism; and polycystic ovaries by ultrasound (Revised 2003 consensus on diagnostic criteria and long-term health risks related to PCOS, 2004).

The Rotterdam criteria expanded previous definitions by including in the PCOS spectrum women with hirsutism, but regular menses, as well as inclusion of polycystic ovarian morphology. The 2006 Androgen Excess Society (AES) Task Force on the Phenotype of PCOS, however, narrowed the definition to exclude women who did not have androgen excess. The criteria include hyperandrogenism (hirsutism and/or hyperandrogenemia); ovarian dysfunction (oligo and/or anovulation and/or polycystic ovarian morphology on ultrasound); and exclusion of other disorders (*Azziz et al.*, 2006).

Current estimates suggest that PCOS affects 5-10% of reproductive age women (*Jeffrey and Coffler*, 2007). In comparison, 'polycystic ovaries' alone are estimated to be present in 21-23% of this same population (*Stankiewicz and Norman*, 2006).

The Anti-Müllerian hormone (AMH), which is also known as Müllerian-inhibiting substance (MIS), is a transforming of growth member the factor-beta (TGF-β) superfamily, which includes more than 35 structurally related peptides, including activins, inhibins, morphogenic proteins (BMPs) and bone growth differentiation factors (*Itman et al.*, 2006). Many of these are involved in the reproductive function of both sexes (Knight and Glister, 2006). AMH binds to dimeric receptors comprised of the AMH-specific type 2 receptor