Study of the Role of Hyperbaric Oxygen Therapy in Autistic Children

Thesis
Submitted in Partial Fulfillment
of Master Degree in Pediatrics

By

Marian Girgiss Risk

M.B., B.Ch. 2005 Faculty of Medicine Ain Shams University

Supervisors

Prof. Dr. Farida Fl-baz Mohamed Fl-baz

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Prof. Dr. Yaser Abd El-Azem Abass

Professor of Radiology
Faculty of Medicine, Ain Shams University

Dr. Reham Mohamed Elhossiny Abd El-Basir

Lecturer of Pediatrics
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2010

Acknowledgment

First and Foremost, thanks to ALLAH

I am extremely grateful to **Prof**. **Dr**. **Farida El-baz Mohamed Elbaz**, Professor of Pediatrics, for her kind unlimited help, guidance and valuable advice in achievement of this thesis. I express my deep gratitude and appreciation for encouragement throughout this work.

I am extremely grateful to **Prof**. **Dr**. **Yaser Abd El-azem**, Professor of Radio diagnosis, for his endless flow of advice, appreciable guidance, and continuous support throughout this work.

I am extremely indebted to Dr. Reham Mohamed Elhossiny Abd El-Basir, Lecturer of Pediatrics, for her illuminating discussion, kind cooperation, helpful direction and continuous effort.

Finally, I would like to thank my parents and husband for their help and cooperation .

To all of those who helped, Thanks a lot.

Marian Girgiss Rizk

List of Contents

Title	Page No.
Introduction	
Aim of the work	4
Review of literature	•••••
♦ Autism	5
♦ Hyperbaric Oxygen Therap	py43
♦ The Role of Hyperbaric Ox	xygen Therapy in Autism66
Patients and methods	101
Results	109
Discussion	137
Summary	149
Conclusions	152
Recommendation	153
References	154
Arabic Summary	

List of Table

Table No.	Title	Page No.
Table (1):	Types of Pervasive developmental disor	ders 6
Table (2):	Differential diagnosis:	41
Table (3):	Effect of Pressure on Arterial O2	46
Table (4):	Physiologic Mechanisms of Hype Oxygen Therapy	
Table (5):	Comparison between monoplace multiplace chambers	
Table (6):	Complications to Hyperbaric O Therapy	
Table (7):	Contraindications of HBOT	65
Table (8):	Proposed mechanisms of inflamm induced cerebral hypoperfusion in a and HBOT effect	utism
Table (9):	Effects of HBOT on inflammatory ma	
Table (10):	Effects of HBOT on measures of oxidestress in autism	
Table (11):	Effects of HBOT on immune dysregulat autism	
Table (12):	The pathophysiology found in autism	99
Table (13):	Age distribution of the patients with AS	SDs109
Table (14):	Distribution of the patients according of diagnosis (onset of the disease)	_
Table (15):	Sex distribution of the studied group	110
Table (16):	Classification of the patients according ASDs	_

List of Table (Cont...)

Table No.	Title	Page No.
Table (17):	The mean ages of the patients, their and fathers, ages at diagnosis and HBOT sessions:	l no of
Table (18):	Classification of the patients according CARS scores	
Table (19):	Frequency of Clinical manifestate autistic children	
Table (20):	Distribution of treatment in children	
Table (21):	Mean values of ATEC and CARS post HBOT	
Table (22):	Statistical comparison between AT CARS pre and post HBOT:	
Table (23):	Statistical Correlation between age, diagnosis, No of sessions and subscales, total score and CARS post	ATEC
Table (24):	Percentage of average score improve age	· ·
Table (25):	Statistical Comparison between case and without speech therapy as subscales, total score and CARS pre at HBOT	ATEC and post
Table (26):	Statistical Comparison between case and without Behavioral therapy accordant Parameters and CA and post HBOT	rding to ARS pre

List of Table (Cont...)

Table No.	Title	Page No.
Table (27):	Statistical comparison between cases and without Respirdal according to subscales, total score and CARS pre ar HBOT	ATEC nd post
Table (28):	Statistical comparison between cases and without Casein gluten free according to ATEC subscales, total sco CARS pre and post HBOT	e diet re and
Table (29):	Statistical comparison between cases and without vitamins according to subscales, total score and CARS pre art HBOT	ATEC nd post
Table (30):	Statistical comparison between cases and without chelation according to subscales, total score and CARS pre ar HBOT	ATEC nd post
Table (31):	Ratio of regional cerebral blood flow (to white matter pre and post HBOT	
Table (32):	Statistical comparison between Ra RCBF to white matter pre and post HE	
Table (33):	Statistical correlation of age, age at dia and no of seessions with ratio of RC white matter post HBOT	CBF to
Table (34):	Statistical correlation of ATEC sub total score and CARS Post HBOT wi ratio of RCBF to white matter post HB	th the

List of Figure

Figure No	o. Title Page No.
Fig. (1):	Showing chromosomal abnormalities implicated in autism
Fig. (2):	Multiplace chamber 50
Fig. (3):	Monoplace chamber 51
Fig. (4):	Proposed cycle of inflammation and resultant cerebral hypoperfusion in autism
Fig. (5):	Histogram showing ATEC subscales pre and ost HBOT115
Fig. (6): H	istogram showing ATEC(total score) and CARS pre and post HBOT115
Fig. (7): I	Histogram showing the ratio of RCBF to white matter pre and post HBOT in different brain areas bilaterally
Fig. (8):	Blood flow before HBOT in frontal and superficial temporal areas
Fig. (9):	Blood flow after HBOT in frontal and superficial temporal areas
Fig. (10):	Blood flow before HBOT in Thalamic areas132
Fig. (11):	Blood flow after HBOT in Thalamic areas133
Fig. (12):	Blood flow before HBOT in deep temperal areas
Fig. (13):	Blood flow after HBOT in deep temperal areas 134
Fig. (14):	Blood flow before HBOT in prefrontal $\ areas135$
Fig (15):	Blood flow after HBOT in prefrontal areas135

List Of Abbreviations

ABA: Applied Behavioral Analysis

AD: Autistic Disorder

ADHD: Attention Deficit Dyperactivity Diorder

AGE: Arterial Gas Embolism

AHI: Abelson Helper Integration

APA: American Psychiatric Associan

ARX: Aristaless Related Homeolox

ASD: Autistic Spectrum Disorder

ATA: Atmospheric Absolute

ATEC: Autism Treatment Evaluation Checklist

CHARGE: Coloboma of the eye, Heart defects, Atresia of the

nasal choana, Retardation of growth, Genital

abnormalities. Ear abnormalities.

CO: Carbon Monoxide

CP: Cerebral Palsy

CRH: Corticotrophin Releasing Hormone

CSF: Cerebrospinal Fluid

DS: Down Syndrome

DSC: Decompression Sickness

DSM-IV-TR: The Diagnostic and Stastical Manual of mental

disorders, fourth edition, text revision

EEG: Electro Encephalo Graphy

EN: Engrailed

FDA: Food Drug Adminstration

FMR: Fragile X Mental Retardation

FXS: Fragil X Syndrome

HBOT: Hyper Baric Oxygen Therapy

HIF-1a: Hypoxia- Inducible Factor-1a

HLA: Histocomptability Antigen

ICD-10: International Classification of Diseases, 10th Edition

IG: Immunoglobulin

IL: Interlukin

IQ: Intelligent Qoiecient

LC-NA: Locus Cerelous-Noradrergic
MECP: Methyl CPG Binding Protein

ML: Milliletter

MR: Mental Retardation

OCD: Obsessive Compulsive Disorder

PDD: Pervasive Developmental Diorder

PDD-NOS: Pervasive Developmental Disorder-Not Otherwise

Specified

PMN: Polymorph Nuclear Lymphocytes

PTEN: Phosphtase Tension
RNF: Ringer Finger Protein

SPECT: Single Postrion Emission Computrazied

Tomography

SS: Savant Syndrome

Th: T Helper Cell

TNF: Tumor Necrosis Factor

TSC: Tuberos Sclerosis Complex

UBE: Ubiquitin Activating Enzyme

UHMS: Undersea, Hyperbaric Medicl Society

UK: United Kingdom

USA: United States of America

VEGF: Vascular Endothelial Growth Factor

WHO: World Health Orginazition

Introduction

Autism is a syndrome characterized by impairments in social relatedness and communication, repetitive behavior, abnormal movements, and sensory dysfunction (Bernard et al., 2001).

Numerous studies of autistic individuals have revealed evidence of cerebral hypoperfusion, neuroinflammation and gastrointestinal inflammation, immune dysregulation, oxidative stress, relative mitochondrial dysfunction, neurotransmitter abnormalities, impaired detoxification of toxins, and impaired production of porphyrins. Many of these findings have been correlated with core autistic symptoms. For example, cerebral hypoperfusion in autistic children has been correlated and repetitive. self-stimulatory with stereotypical behaviors. and impairments communication. in Hyperbaric oxygen therapy (HBOT) might be able to improve each of these problems in autistic individual (Ohnishi et al., 2000).

Specifically, HBOT has been used and can compensate for decreased blood flow by increasing the oxygen content of plasma and body tissues. HBOT has been reported to possess strong anti-inflammatory properties and has been shown to improve immune

₹ Introduction

function. There is evidence that oxidative stress can be reduced with HBOT through the upregulation of antioxidant enzymes. HBOT can also increase the function and production of mitochondria and improve neurotransmitter abnormalities.In addition, HBOT upregulates enzymes that can help with detoxification problems specifically found in autistic children Impaired production of porphyrins in autistic children might affect the production of heme, and HBOT might help overcome the effects of this problem. HBOT has been shown to mobilize stem cells from the bone marrow to the systemic circulation. Recent studies in humans have shown that stem cells can enter the brain and form new neurons, astrocytes, and microglia. It is expected that amelioration of these underlying pathophysiological problems through the use of HBOT will lead to improvements in autistic symptom (Rossignol, 2006).

Studies have demonstrated hypoperfusion to several areas of the autistic brain, most notably the temporal lobes (*Ohnishi et al., 2000*).

Several studies show that reduced blood flow to the temporal regions and other brain areas correlates with many of the clinical findings associated with autism including repetitive, self-stimulatory and stereotypical

₹ Introduction

behaviors, and impairments in communication, sensory perception, and social interaction (*Boddaert et al., 2004*).

Diminished blood flow to the thalamus has been correlated with the autistic clinical features of repetitive, self-stimulatory, and unusual behaviors including resistance to changes in routine and environment (Starkstein et al., 2002) Another study on "high functioning" autistics demonstrated decreased blood flow to areas of the temporal lobe and amygdala, which was correlated with clinical impairments in processing facial expressions and emotions (Critchley et al., 2000).

In one study, hypoperfusion of the prefrontal and left temporal areas worsened and became "quite profound" as the age of the autistic child increased. This diminished perfusion correlated with decreased language development. The authors concluded that hypoperfusion "subsequently prevents development of true verbal fluency and development in the temporal and frontal areas associated with speech and communication" (Wilcox et al., 2002).

Aim of the Work

The aim of this work is to study the effect of hyperbaric oxygen therapy in autistic Egyptian children.

Autism

Definition:

Autism is a neuro-developmental disorder in the category of pervasive developmental disorders, characterized by problems of social communication, inflexible language and behavior, repetitive sensorymotor movements (Eigesti et al., 2003; Georgiades et al., 2007).

Both The Diagnostic and Statistical Manual of Mental Disorders DSM-IV-TR (fourth edition, text revision) (American psychiatric Association, 2000), international classification of diseases,10th edition(ICD-10) (WHO, 1993) stated that pervasive developmental disorders (PDD)- more often referred today as autism spectrum disorders- include as shown in table (1):

- 1. Autistic disorder.
- 2. Asperger's syndrome.
- 3. Pervasive developmental disorder-not otherwise specified (PDD-NOS) PDD-NOS; also called atypical autism) is diagnosed when the criteria are not met for a more specific disorder (Volkmar et al., 2009).
- 4. Rett's syndrome.
- 5. Childhood disintegrative disorder.

All these disorders are characterized by varying degrees of impairment in communication skills, social interactions, and restricted, repetitive and stereotyped patterns of behavior (WHO, 2007).

Table (1): Types of Pervasive developmental disorders.

Characteristic	Autistic disorder	Asperger's disorder	CDD	Rett's disorder	PDD NOS
Age at onset	< 3 yr	Variable	2-10 yr	5-30 mo	Variable
Presence of regression	Mild, in minority of patients	No	Yes	Yes	No
Gender	M/F ratio 4:1	M>F	M>F	F primarily	M>F
Mental retardation	Present in majority	Absent in majority	Often severe	Often severe	Variable
Social impairment	Yes	Yes	Yes	Yes	Yes
Communication impairment	Yes	No ^A	Yes	Yes	Variable
Restricted interests/repetitive behaviors	s Yes	Yes	Yes	Yes	Variable

(Amercian Psychiatric Association, 1994)

Regressive autism

A subgroup of children with ASDs experiences a "regression," meaning they stop using the language, play, or social skills they had already learned. This regression usually happens between the first and second birthdays (*Lord et al., 2004*).

Types:

Autism is divided into low-, medium- or high-functioning autism (LFA, MFA, and HFA), based on IQ thresholds (*Baron, 2006*).