Post-Ocular Surgeries Dry Eye

An Essay

Submitted for partial fulfillment of Master Degree in Ophthalmology

By

Esraa Hosny Abu Al Yazed Metwalli M.B.B.Ch

Supervised by

Prof. Dr. Fatma Mohamed Shafik El Hennawi

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Prof. Dr. Tamer Mohamed El-Raggal

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Prof.Dr. Abdelrahman Gaber Salman

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
Cairo
2018

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

My most sincere gratitude is also extended to **Prof. Dr. Fatma Mohamed Shafik El Hennawi,** Professor of Ophthalmology, Faculty of Medicine – Ain Shams University, for her enthusiastic help, continuous supervision, guidance and support throughout this work. I really have the honor to complete this work under her supervision.

Words fail to express my appreciation to **Prof. Dr. Tamer Mohamed El-Raggal,** Professor of Ophthalmology,

Faculty of Medicine – Ain Shams University, for his great help,

valuable suggestions and directions throughout the whole work.

I would like also to thank with all gratitude **Prof. Dr. Abdelrahman Gaber Salman**, Professor of Ophthalmology,

Faculty of Medicine – Ain Shams University, for the efforts and time he has devoted to accomplish this work.

Last but not least, I can't forget to thank all members of my Family, especially my **Husband**, for pushing me forward in every step in the journey of my life.

Esraa Hosny Abu Al Yazed Metwalli

List of Contents

Subject	Page No.
List of Abbre	viationsi
List of Tables	siii
List of Figure	esiv
Introduction	1
Aim of the W	ork4
Chapter (1):	Tear Film Composition and Function 5
Chapter (2):	Dry eye Syndrome24
Chapter (3):	Ocular Surgeries and its Relation to Dry Eye
Chapter (4):	Tear film instability and diagnostic testing
Chapter (5):	Preoperative Management of Dry Eye 88
Chapter (6):	Intraoperative and postoperative management 104
Chapter (7):	Prognosis of Dry Eye Syndrome following Ocular Surgeries
Summary	
References	
Arabic Sumn	nary—

List of Abbreviations

Abbr. Full-term

Ach : Acetylcholine

ADDE : Aqueous tear deficient dry eye

ARDE : Age-Related Dry Eye

BAC : Benzalkonium chloride

BM Basement membrane

BSS : Balanced salt solution

CGRP : Calcitonin gene related peptide

CL : Contact lens

CLSM : Confocal laser scanning microscopy

CMC : Carboxy methyl cellulose

CME : Cystoid macular edema

CO : Cornea

DEWS : Dry Eye Workshop

DED : Dry eye disease

DHA : Docosahexaenoic acid

DMEK : Descment membrane endothelial keratoplasty

DPA : Diphenylamine

EDE : Evaporative dry eye

EPA : Eicosapentaenoic acid

FCT : Fluorescein clearance test

FS-LASIK: Femtosecond laser assisted in situ keratomileusis

FU: Fluorouracil

FVA : Functional visual acuity

GVHD : Graft versus host disease

HPMC : Hydroxypropyl methylcellulose

HSV : Herpes simplex virus

IBI : Inter blink interval

IL : Interleukin

LASIK: Laser-assisted in situ keratomileusis

LG : Lissamine green

MALT : Mucosa associated lymphoid tissue

MGD : Meibomian gland dysfunction

MMP : Matrix metalloproteinase

MMC : Mitomycin C

NSAID : Non-steroidal anti-inflammatory drops

OCT : Optical coherence tomography

OPI : Ocular protection index

OSDI : Ocular Surface Disease Index

PEG : Poly ethyl glycol

PRK : Photorefractive keratectomy

PROSE : Prosthetic replacement of the ocular surface ecosystem

PUFA : Poly unsaturated fatty acids

PVA : Poly vinyl alcohol

RANTES: Regulated on activation normal T-cell expressed and secreted

RK : Radial keratotomy

sIgA : Secretory immunoglobulin A

SPK : Superficial punctate keratitis

SSDE : Sjögren's syndrome dry eye

SSRIs : Selective serotonin reuptake inhibitors

ST : Schirmer test

TBUT : Tear breakup time

TFI: Tear function index

TM : Tear meniscus

TMH : Tear meniscus height

TMS : Tear film analysis system

TNF : Tumor necrosis factor

UTM : Upper tear meniscus

VEGF : Vascular endothelial growth factor

List of Tables

Lavie No.	Ittle	Page No.
[Table 1.1]:	Tear film aqueous layer proteins	11
[Table 1.2]:	Characteristics of Superficial,	Suprabasal
	and Basal Cells of the Corneal Ep	ithelium 18
[Table1.3]:	Ocular Surface Mucins	22
[Table 2.1]:	Risk factors for dry eye	26
[Table 4.1]:	Comparison of Three Commo	only Used
	Methods to Grade Ocular Surface	Staining 74
[Table 5.1]:	Composition of artificial tears	92

List of Figures

Figure No.	Title	Page No.

The Tear Film (a) Distribution (b) Structure	7
Slit lamp photographs with fluorescein staining of (a) a normal subject (b) a dry eye patient	8
Schematic representation of the structure of the tear film.	9
Structure of the Lacrimal gland	13
Transmission electron micrographs of the surface cell layer of the cornea showing corneal epithelial microvilli with transmembrane mucins that extend into the mucin/aqueous glycocalyx	15
(a) Layers of the cornea (b) Corneal epithelium	17
The X, Y, Z hypothesis of corneal epithelial maintenance. The proliferation of basal cells (X), and the subsequent centripetal migration (Y), is equal to the shedding of superficial epithelial cells (Z)	20
Etiologic classification of dry eye disease	27
Lacrimal functional unit	41
During clear corneal cataract surgery, a large portion of the corneal nerves are cut	48
Corneal nerve alteration after keratoplasty	51
Mechanisms of dry eye	58
Tear hyperosmolarity	59
Increasing hyperosmolarity leads to an increase in corneal epithelial cell apoptosis	60
	Slit lamp photographs with fluorescein staining of (a) a normal subject (b) a dry eye patient

[Fig. 4.4]: Tear break up: (1) as the tear film thins, dry spots	
develop on the surface of the cornea	63
[Fig. 4.5]: Schirmer test strips with millimeter markings	66
[Fig. 4.6]: Schirmer test.	67
[Fig. 4.7]: Corneal fluorescein staining indicating superficial punctate keratopathy	71
[Fig. 4.8]: Rose Bengal staining of the ocular surface	72
[Fig. 4.9]: (a) Lissamine green strips (b) Lissamine green staining ocular surface	73
[Fig. 4.10]: Slit lamp photography of tear meniscus height using fluorescein dye	75
[Fig. 4.11]: (A) Patient positioned in front of the portable, slit-lamp mounted portable digital meniscometer. The grid on the screen is reflected by the cornea and the lower tear meniscus. (B) measurement of line distance on the meniscometer image	76
[Fig. 4.12]: Tearscope plus	
[Fig. 4.13]: Visante optical coherence tomography images	78
[Fig. 4.14]: Interferometry	79
[Fig. 4.15]: Imaging of the meibomian glands through transillumination or infrared devices	80
[Fig. 4.16]: meibometry	81
[Fig. 4.17]: Tear osmlarity measuring using Tearlab	82
[Fig. 4.18]: Esthesiometry	85
[Fig. 5.1]: Preservative-free unit-dose vials	93
[Fig. 5.2]: Permanent punctal plug in the right punctum of a patient	100
[Fig. 5.3]: The PROSE device	102

List	of	Fig	ures

[Fig. 5.4]: Schematic presentation of the PROSE device....... 103

Introduction

n 2007, the International Dry Eye Workshop defined dry eye disease as "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and inflammation of the ocular surface" (*Lemp et al.*, 2007).

There are many causes and factors leading to dry eye, including aging, female gender, connective tissue diseases, diabetes mellitus, contact lens usage, drugs like anticholinergics, antidepressants, antihistamines. oral contraceptives and topical eye drops containing preservatives and ocular diseases like blepharitis, chronic conjunctivitis, meibomitis and pterygium (De Paiva et al., 2006) (Shoja & Besharati, 2007) (Moss et al., 2008). The symptoms observed in dry eye syndrome include dryness, irritation, burning, foreign body sensation, heaviness of the eyelids, redness, reflex lacrimation, ocular pain and fatigue. It may keratitis, persistent epithelial cause punctate filamentary keratopathy, superior limbic keratoconjunctivitis and reduced visual acuity (Li et al., 2007) (Garcia-Catalan et al., 2009).

Some surgical interventions related to anterior segment may also cause dry eye and aggravate the symptoms in preexisting dry eye, like PRK, LASIK and cataract surgery

(Hardten, 2008) (Khanal et al., 2008) (Albietz & Lenton, 2004).

Clear cornea phacoemulsification has become one of the safest, most successful, and most frequently performed outpatient surgeries nowadays; however, as with other corneal surgeries, it may alter the ocular surface and disrupt normal tear function (*Liu et al.*, 2002).

Moreover, keratorefractive surgery seems to cause tear-deficient dry eye by a neural-based mechanism (Ang et al., 2001). Corneal sensitivity is essential for the maintenance of normal corneal structure and function but inevitably surgical procedures such as PRK and LASIK induce loss of normal sensitivity which may compromise protective blink reflex, delay epithelial wound healing and even induce neurotrophic keratitis or sterile corneal melts (Matsui et al., 2001).

Pre-operative recognition of patients with ocular surface disease provides an opportunity to optimize the surface before proceeding with surgery. The patient history is often one of the most important elements in the diagnosis of patients with dry eyes. The clinical exam of the patient can provide additional clues that suggest tear film insufficiency. These include findings such as debris in the tear film, a low tear meniscus height, evidence of lid margin disease, and conjunctival inflammation (*Nichols et al.*, 2000).

Diagnostic testing is greatly valuable for the detection of early changes due to dry eyes. The most commonly

-	c	
Intr	กสาน	rt1011

performed tests include Schirmer test (ST), tear breakup time (TBUT) and ocular surface staining (*Hay et al.*, 1998).

Management of ocular surface disease may be done most effectively by following established treatment guidelines (*Behrens et al., 2006*).

Aim of the Work

The aim of this study is to review the factors causing dry eye after various ocular surgeries, the way to decrease its occurrence and the best approach for its treatment.