تأثير مرض السمنة على إستجابة الجهاز المناعى للتطعيم ضد الفيروس الكبدى (ب)

رساله مقدمه من الطبيب / عمر محمد حسين محمد توطئه للحصول علي درجة الماجستير في أمراض الباطنة العامة

تحت اشراف أد أميرة أحمد سالم أستاذ الباطنة العامة كلية الطب – جامعة عين شمس

أمرد عزة إمام محمد أستاذ مساعد الباطنة العامة كلية الطب – جامعة عين شمس

د. وسام أحمد إبر اهيم مدرس الباطنة العامة كلية الطب – جامعة عين شمس

> كلياة الظاف جامعة عين شمس ٢٠١٠

The effect of obesity on the immune response of hepatitis B virus vaccination

Thesis

Submitted For Partial Fulfillment of the Master Degree (m.sc.)

In Internal Medicine

 $\mathbf{B}\mathbf{y}$

Omar Mohamed Hussein

M.B.B.Ch. - Faculty of Medicine Assiout University

Supervised by

Prof. DR. Amira Ahmed Salem

Professor of Internal Medicine Faculty of Medicine - Ain Shams University

Ass. Prof. DR. Azza Emam Mohamed

Assistant Professor of Internal Medicine Faculty of medicine - Ain Shams University

DR. Wesam Ahmed Ibrahim

Lecturer of Internal Medicine Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2010

بسم الله الرحمن الرحيم

قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْحَلِيمُ الْحَكِيمُ.

سورة البقرة آية (٣٢)

Acknowledgment

First and above all, thanks to **ALLAH**, the source of all knowledge and wisdom who enabled me to complete this work.

I wish to express my sincere appreciation and deepest feeling of gratitude to *Professor Doctor*. *Amira Ahmed Salem*, Professor of Internal Medicine, Ain Shams University for her scientific advice, kind brother heart guidance, genius supervision and unlimited support she offered me to complete this work.

I am deeply indebted to Assistant Professor Doctor. Azza Emam Mohamed, Assistant Professor of Internal Medicine, Ain Shams University for her inspiration, sincere care, and encouragement.

I wish to express my deep appreciation to **Dr.** *Wesam Ahmed Ibrahim*, Lecturer of Internal Medicine, Ain Shams University for her kind help and encouragement throughout this research.

I wish to thank all Members of Internal medicine Department, Faculty of Medicine, Ain Shams University for their kind help, kind cooperation and support during my research work.

List of Contents

	Page
Introduction & aim of the work	1-3
Review of literature:	4-121
- Hepatitis B	4-48
- Obesity	49-89
- Hepatitis B vaccine	90-105
- Relation between obesity and immunity	106-121
Patients &methods	122-126
Results	127-139
Discussion	140-144
Summary & conclusion	145-148
Recommendations	149
References	150-188
Arabic summary	

List of Tables

No	Title	Page
Table (1):	Geographic areas with intermediate* and high† Africa: all countries hepatitis B virus endemicity.	8
Table (2):	Interpretation of Hepatitis B serologic results	39
Table (3):	Recommendations for Infected Persons Regarding Prevention of Transmission of HBV to Others. (The American Association for the Study of Liver Diseases	41
Table (4):	Groups at High Risk for HBV Infection Who Should Be Screened	42
Table (5):	Treatment Guidelines for chronic HBV Infection	45
Table (6):	Definition of Response to Antiviral Therapy of Chronic Hepatitis B	47
Table (7):	classification of BMI	52
Table (8):	some of the figures for waist circumference values of different ethnic groups	54
Table (9):	co morbidities of obesity	69
Table (10):	Weight Loss Treatment Guidelines	89
Table (11):	Dosing Schedule for Recombivax HB, Engerix-B, and Twinrix Hepatitis B Vaccines	92

No	Title	Page
Table (12):	Immunization strategy to eliminate transmission of hepatitis B virus (HBV) infection in the United States	93
Table (13):	Groups for whom Hepatitis B vaccine is recommended.	95
Table (14):	Immune response after hepatitis B vaccine in different populations of world	105
Table (15):	Demography of study sample.	127
Table (16):	Comparison between both groups as regard general data	128
Table (17):	Comparison between both groups as regard waist / hip ration and BMI	128
Table (18):	Comparison between both groups as regard different age groups	129
Table (19):	Comparison between both groups as regard laboratory data	131
Table (20):	Comparison between both groups as regard hepatitis B surface antibody titer antibodies	131
Table (21):	Correlation between hepatitis B surface antibody titer versus general data among obese group	132
Table (22):	Correlation between hepatitis B surface antibody titer versus laboratory data among obese group	133

No	Title	Page
Table (23):	Comparison between males and females as regard hepatitis B surface antibody titer among obese group	134
Table (24):	Comparison between males and females as regard hepatitis B surface antibody titer among obese group	134
Table (25):	Correlation between hepatitis B surface antibody titer versus general data among non obese group	136
Table (26):	Correlation between hepatitis B surface antibody titer versus laboratory data among non obese group	137
Table (27):	Comparison between males and females as regard hepatitis B surface antibody titer among non obese group	138

List of Figures

No	Title	Page
FIG (1):	Hepatitis B prevalence.	8
FIG (2):	Cellular Immune Responses to HBV.	13
FIG (3):	Hepatitis B virus replication cycle.	17
FIG (4):	The HBV genome synthesis	19
FIG (5):	A simplified drawing of the HBV particle and surface antigen.	21
FIG (6):	Hepatitis B virus organization	23
FIG (7):	Patterns of Serologic and Molecular Markers in HBV Infection.	28
FIG (8):	Hepatitis B viral antigens and antibodies detectable in the blood following acute infection.	37
FIG (9):	Hepatitis B viral antigens and antibodies detectable in the blood of a chronically infected person.	38
FIG (10):	Ground glass hepatocytes as seen in a chronic hepatitis B infection.	40
FIG (11)	Map of dietary energy availability per person per day in 1979-1981	57
FIG (12)	Map of dietary energy availability per person per day in 2001–2003	58
FIG (13)	A diagram showing leptin pathway	73
FIG (14)	The above diagram showing anti obesity effect of IL-6 during exercise	76

No	Title	Page
FIG (15)	A proposed model describing the long-term regulation of appetite and energy balance	77
FIG (16)	A proposed role for leptin and insulin as signals of energy status in birds.	79
FIG (17)	Interaction between nutritional status, host immunodefence and disease	106
FIG (18)	Clinical outcome related to incidence of infection in obese and non-obese individuals	110
FIG (19)	Leptin involvements in immunoregulation as affected by overfeeding and fasting	115
FIG (20)	Lymphocyte counts (A) and proliferative responses to mitogens (B) in obese and nonobese subjects	117
FIG (21)	Lymphocyte count and proliferative responses to mitogen in obese individuals as affected by a moderate energy restriction	119
FIG (22)	Show sex distributions between two groups with no significant difference.	129
FIG (23)	Show highly significant correlation between different age groups as regard hepatitis B surface antibody titer among non-obese and obese groups.	130

No	Title	Page
FIG (24)	Shows that non obese cases had a higher hepatitis B surface antibody titer compared to obese group	132
FIG (25)	Shows inverse significant correlation between BMI versus hepatitis B surface antibody titer.	133
FIG (26)	Show non significant correlation between males and females as regard hepatitis B surface antibody titer among obese group	135
FIG (27)	Shows inverse significant correlation between BMI versus hepatitis B surface antibody titer.	136
FIG (28)	Shows inverse significant correlation between waist-hip ratio versus hepatitis B surface antibody titer.	137
FIG (29)	Show non significant correlation between males and females as regard hepatitis B surface antibody titer among non-obese group	138

List of Abbreviations

the American Association for the Study of Liver
Diseases
Advisory Committee on Immunization Practices
agouti-related peptide
Acquired immunodeficiency syndrome
Alanine aminotransferase
Aspartate aminotransferase
body mass index
Biochemical response
coronary artery by pass grafts
amphetamine-regulated transcript
cholecystokinin
Centre for disease control and prevention
Chronic hepatitis B
Complete response
computed tomography
Central nervous system
Dietary Approaches to Stop Hypertension
dual energy X-ray absorptiometry
Diagnostic and Statistical Manual of Mental
Disorders
diphtheria and tetanus toxoids and acellular
pertussis
tetanus, pertussis and oral polio
Enzyme-linked immunosorbent assays
Food and drug administration
glucagon like peptide-1
Hepatitis B core antigen
Hepatitis B envelope antigen
Hepatitis B immune globulin

TID A	II
HBsAg	Hepatitis B surface antigen
HBsAg	Hepatitis B surface antigen
HBV	Hepatitis B virus
HCV	Hepatitis C virus
HDV	Hepatitis D virus
Hib	influenza type b
HIV	Human immunodeficiency virus
hnRNP K	Heterogeneous nuclear Ribonucleoprotein K
HR	Histological response
IFN	interferon
IL-6	Interleukin-6
IPV	inactivated poliovirus
IPV	inactivated poliovirus
LH	lateral hypothalamus
MCH	major-histocompatibility-complex
MIF	migration inhibitory factor
MIF	macrophage migration inhibitory factor
mIU	Mili international unit
MRI	magnetic resonance imaging
MS	Multiple sclerosis
NASH	Non-alcoholic steatohepatitis
NCEP	National cholesterol education program
NEJM	New England journal of medicine
NHLB	National Heart, Lung, and Blood Institute
NIH	National Institutes of Health
NK cells	natural killer cells
NPY	neuropeptide Y
PCR	Polymerase chain reaction
POMC	proopiomelanocortin
PPARγ	peroxisome proliferator activated receptor
PYY	Peptide YY
SIDS	sudden infant death syndrome

TNF	Tumor necrosis factor
TNF-α	tumour necrosis factor α
VLCD	very low calorie diet
VMH	ventromedial hypothalamus
VR	Virological response
VSD	Vaccine Safety Datalink
WHO	World Health Organization

Introduction

Approximately two billion people worldwide, of which 350 million are chronic virus carriers, have serological evidence of HBV infection. One million people die each year from acute and chronic sequelae of HBV infection. Despite recent advances in anti-viral therapy, there remains no cure for chronic HBV infection. So primary prevention with HBV vaccination is the only strategy likely to reduce the morbidity caused by HBV infection. (*Alter*, 2003).

Infection of infants and young children with the hepatitis B virus (HBV) represents an important health hazard, since the younger the age at which the infection is acquired, the greater the predisposition to the carrier state, chronic liver disease and subsequent development of cirrhosis and hepatocellular carcinoma. (*Arnot*, 1997).

The World Health Organization (WHO) has targeted hepatitis B as one of eight infectious diseases that should be controlled by vaccination. In most developing countries, HBV infection is endemic, and attempts to prevent infection must be made very early during childhood. Accordingly, in 1992, Egypt started a programme of universal immunization in infancy. The schedule adopted by the Egyptian Ministry of Health was three doses of a yeast-recombinant HB vaccine administered to all