

# A STUDY OF THE INTERACTION BETWEEN THE VALVE CONFIGURATION AND THE FLUID DYNAMICS IN OSCILLATING SYSTEMS

# Ashraf Ibrahim Mostafa Sharara

A thesis submitted in partial fulfillment of the requirements of Ain-Shams University for the degree of

#### **Doctor of Philosophy**

#### **Supervisors**

Prof. Zakria A. Ghoneim

Faculty of Engineering Ain-Shams University

#### Prof. El Sayed S. Ahmed

College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport..

#### Assist.Prof. Amr A. Hassan

College of Engineering and Technology, Arab Academy for Science and Technology and Maritime Transport..

Mechanical Engineering Department Faculty of Engineering Ain-Shams University 2010



# **EXAMINATION COMMITTEE**

The undersigned certify that they have read and recommend to the Faculty of Engineering at Ain Shams University the acceptance of a thesis entitled "A Study of The Interaction between The valve Configuration and the Fluid Dynamics in The Oscillating Systems", submitted by Eng. Ashraf Ibrahim Mostafa Sharara, in partial fulfillment of the requirements of Ain-Shams University for the degree of Doctor of Philosophy in Mechanical Engineering.

| Name                                                                                                                              | Signatures |
|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| Prof. Abdel Wahab Arousy<br>Faculty of Engineering<br>Leicester University, United Kingdom.                                       |            |
| Prof. Raouf N. Abdel Massih<br>Faculty of Engineering<br>Ain Shams University.                                                    |            |
| Prof. Mohamed R. Salem Faculty of Engineering Ain Shams University.                                                               |            |
| Prof. El Sayed S. Ahmed<br>College of Engineering & Technology<br>Arab Academy for Science and Technology<br>& Maritime Transport |            |

Mechanical Engineering Department Faculty of Engineering Ain-Shams University 2010



# **Supervisors Committee**

The undersigned certify that they have read and recommend to the Faculty of Engineering at Ain Shams University the acceptance of a thesis entitled "A Study of The Interaction between The valve Configuration and the Fluid Dynamics in The Oscillating Systems", submitted by Eng. Ashraf Ibrahim Mostafa Sharara, in partial fulfillment of the requirements of Ain-Shams University for the degree of Doctor of Philosophy in Mechanical Engineering.

| Name                                                                                                                                 | Signatures |
|--------------------------------------------------------------------------------------------------------------------------------------|------------|
| Prof. Zakria A. Ghoneim Faculty of Engineering Ain Shams University.                                                                 |            |
| Prof. El Sayed S. Ahmed<br>College of Engineering & Technology<br>Arab Academy for Science and Technology &<br>Maritime Transport    |            |
| Assist.Prof. Amr A. Hassan<br>College of Engineering & Technology<br>Arab Academy for Science and Technology &<br>Maritime Transport |            |

Mechanical Engineering Department Faculty of Engineering Ain-Shams University 2010

# TO MY GREAT PARENTS, AND BELOVED WIFE MAY GOD BLESS THEM ALL

# **Statement**

This dissertation is submitted for the partial fulfillment of the requirements of mechanical engineering department in Ain-Shams University for the degree of doctor of philosophy.

The work, included in this research, is carried out by the author and no part of it has been submitted for a degree or qualification at any other university.

Signature

Ashraf I. Sharara

# ACKNOWLEDGEMENT

Many Thanks to *God* for the completion of this research work at the convenient time. I would like to thank *Prof.Dr. Zakria Ghoneim*, thesis supervisor, for his perpetual participation and valuable scientific assistance during the research.

In addition, I forward my great thanks and appreciation to *Prof.Dr. El Sayed Saber*, thesis supervisor, for his kind assistance and help, especially in the designing stage of the test rig, as well as his tremendous effort in revising the transcript of this research.

Moreover, I highly appreciate the effort, support, guidance, encouragement and assistance of *Asst.Prof.Dr.Amr Aly*, especially during the execution of computational fluid dynamic studies of the present work.

I would like also to present a very special thank to *Dr. Yasser Abdel Razak*, *Faculty of Engineering-Alexandria University*, for his help, assistance and valuable guidance in the executed Computational Fluid Dynamics study. I am also grateful to the all members of staff at the *Arab Academy for Science and Technology and Maritime Transport* for their moral and financial supports.

I would also like to thank all members of staff in the maintenance sector at *Abu Qir Fertilizers Company*, for their help in the manufacturing of the experimental test rig, especially, *Eng.Kairy El Shamy*, *Eng.Ayman El Geziry and Eng. Ahmed Salem*.

Least but not Last, I give special thanks to *my parents and wife* for their support and encouragement during the whole period of my Ph.D. study at Ain Shams University.

#### **ABSTRACT**

One of the main sources of the flow – induced vibration in the piping systems is the presence of control valves. When the valve operates at relatively small openings and under certain operating conditions, vibration problems arise from the interaction between the valve configuration and the fluid flow. Therefore, the valve, as well as the piping system will experience severe vibration levels. The impact of the vibration may result in fracture damage in the valve and/ or the piping system. The present research work is dedicated towards the study of the interaction between the configuration of a flat -face globe valve, operating at different openings, and the fluid dynamics in the oscillating systems. A hybrid study of numerical and experimental work is to be conducted. A mathematical model for the flow, passing through the control valve, has been developed. The flow model was numerically solved by using FLUENT 6.3 commercial code. The numerical results were obtained for different valve openings and operating conditions. The incompressible turbulent flow, through the valve, was found to be transient for a small period. Then, the flow reaches a steady-state condition. Moreover, the observed flow phenomenon was found to be a circumferential jet flow that comes out from the annular gap between the plug and the seat. The phenomenon is associated with a steady system of vortices, resulting from the interaction between the jet flow and the internal configuration of the valve. On the other hand, a test rig had been designed and manufactured by the author, in order to conduct necessary tests on the control valve, under different operating conditions. The test rig is equipped with all transducers for both flow and vibration measurements. The flow measurement includes the pressure drop across the orifice to calculate the volume flow rate, the upstream and downstream pressures of the valve and the flow force acting on the stem of the valve. The flow measurement was performed by using an S-Shape Load cell, which was designed and developed by the researcher. Moreover, a good correlation between the numerical and experimental values of the flow force was noticed. On the other hand, the vibration measurement is limited to the valve vibration level. The experimental results indicate that the control valve, under study, is of Quick-Opening Inherent Characteristic. Moreover, the measurement of the volume flow rate and the downstream pressure, for different conditions, were used as actual boundary conditions for the CFD simulations. The flow measurements results were reduced by performing a dimensional analysis for the flow force, acting on the valve stem. Therefore, an empirical formula was obtained between the dimensionless force and the volume flow rate. The dimensionless exciting force decreases as the valve opening increases. For small valve opening values, a little change in the plug position yields to a significant variation in the value of the exciting force which means that the effectiveness of valve position becomes very much pronounced for small values of valve opening. Regarding the vibration measurements, the frequency spectrums for all performed test conditions (Re=  $1*10^5 - 3*10^5$ ) and different stiffness of the stem, were found in the low frequency range (up to 55 HZ). Moreover, the reduction of the stiffness of the stem supports yields to an increase in the vibration level. Moreover, for a certain value of valve opening, the increase in the flow rate tends to an increase in the vibration level of the stem. On the other hand, the recirculation zone, occurring at the downstream of the valve plug, as indicated by CFD simulation, causes periodic variations in the pressure differences across the plug with three dominant frequencies of 10.94, 12.5 & 14 HZ. An experimental correlation between Reynolds and Strouhal numbers was obtained. The later was found to be in qualitative agreement with previous research work. Finally, a better understanding of the flow phenomenon and its consequences for the turbulent flow, passing through the globe control valve with flat -face plug, had been achieved

# **Table of Contents**

|        |                                                                                        | Page No. |
|--------|----------------------------------------------------------------------------------------|----------|
| Ackn   | owledgment                                                                             | vi       |
| Abstr  | ract                                                                                   | vii      |
| Table  | e of Contents                                                                          | ix       |
| List c | of Figures                                                                             | xiv      |
| List o | of Tables                                                                              | xvii     |
| Nom    | enclature                                                                              | xviii    |
| СНА    | PTER ONE: INTRODUCTION                                                                 |          |
| 1.1    | Problem Definition                                                                     | 1        |
| 1.2    | Aim of the Work                                                                        | 2        |
| 1.3    | Thesis Layout                                                                          | 3        |
| СНА    | PTER TWO: LITERATURE REVIEW                                                            |          |
| 2.1    | Introduction                                                                           | 5        |
| 2.2    | Literature Review                                                                      | 8        |
|        | 2.2.1 Flow Induced Vibration in Fluid Valves                                           | 8        |
|        | 2.2.2 Effect of Valve Configuration                                                    | 24       |
|        | 2.2.3 Usage of Computational Fluid Dynamics in Analysis of Flow through Control Valves | 25       |
| 2.3    | Conclusion                                                                             | 35       |

# CHAPTER THREE: MATHEMATICAL MODELING FOR FLOW TROUGH GLOBE CONTROL VALVE

| 3.1                                                    | Physical System                                          | 36 |
|--------------------------------------------------------|----------------------------------------------------------|----|
| 3.2                                                    | Governing Equations                                      | 37 |
| 3.3                                                    | Model Assumptions                                        | 38 |
| 3.4                                                    | Reynolds -Average Navier Stokes (RANS) Equations         | 39 |
| 3.5                                                    | Turbulence Modeling                                      | 40 |
|                                                        | 3.5.1 Reynolds Stresses                                  | 40 |
|                                                        | 3.5.2 Eddy Viscosity Hypothesis                          | 40 |
|                                                        | $3.5.3 \text{ K} - \epsilon$ (Standard) Turbulence Model | 41 |
| 3.6                                                    | Model in Dimensionless Form                              | 42 |
| CHAPTER FOUR: NUMERICAL SOLUTION, RESULTS AND ANALYSIS |                                                          |    |
| 4.1                                                    | Numerical Solution                                       | 45 |
|                                                        | 4.1.1 Computational Domain                               | 45 |
|                                                        | 4.1.2 Mesh Generation                                    | 46 |
|                                                        | 4.1.3 Numerical Scheme                                   | 48 |
|                                                        | 4.1.4 Steady-State Iterative Algorithm                   | 52 |
|                                                        | 4.1.5 Unsteady-State Algorithm                           | 53 |
|                                                        | 4.1.6 Boundary Conditions                                | 54 |
|                                                        | 4.1.7 Initial Conditions                                 | 54 |
|                                                        | 4.1.8 Convergence Criterion                              | 55 |

| 4.2 | Numerical Results                                         | 56  |
|-----|-----------------------------------------------------------|-----|
|     | 4.2.1 Steady State Solution                               | 56  |
|     | 4.2.2 Transient Solution                                  | 68  |
|     | 4.2.2 Unsteady State Solution                             | 74  |
| 4.3 | Analysis of Results                                       | 82  |
|     | 4.3.1 Steady State Solution                               | 82  |
|     | 4.3.2 Unsteady State Solution                             | 98  |
| CHA | PTER FIVE: EXPERIMENTAL SETUP                             |     |
| 5.1 | Experimental Test Rig                                     | 101 |
|     | 5.1.1 Water Tank                                          | 103 |
|     | 5.1.2 Main Chassis                                        | 103 |
|     | 5.1.3 Suction Piping System                               | 103 |
|     | 5.1.4 Delivery Piping System                              | 104 |
|     | 5.1.5 Test Section                                        | 104 |
| 5.2 | Test Rig Operation & Control                              | 105 |
| 5.3 | Control Valve Design Modification                         | 106 |
| 5.4 | Measurement System                                        | 114 |
|     | 5.4.1 Flow Measurement                                    | 114 |
|     | 5.4.2 Vibration Measurement                               | 126 |
|     | 5.4.3 Data Acquisition (DAQ)Systems                       | 127 |
| 5.5 | Evaluation Procedure for Measurement Uncertainty Analysis | 130 |

# CHAPTER SIX: EXPERIMENTAL RESULTS

| 6.1  | Test Rig Running Trials                                    | 135 |
|------|------------------------------------------------------------|-----|
| 6.2  | Flow Measurement Results                                   | 135 |
|      | 6.2.1 Pressure Measurement                                 | 136 |
|      | 6.2.2 Control Valve Inherent Characteristic Curve          | 141 |
| 6.3  | Vibration Measurement Results                              | 142 |
|      | 6.3.1 Modal Tests                                          | 142 |
|      | 6.3.2 Vibration Measurements for Control Valve             | 145 |
| 6.4  | Analysis of Results                                        | 155 |
|      | 7.4.1 Measurement Uncertainty Results                      | 155 |
|      | 7.4.2 Analysis of Flow Measurement Results                 | 156 |
|      | 7.4.3 Analysis of Vibration Measurement Results            | 165 |
| СНА  | PTER SEVEN: CONCLUSION                                     |     |
| 7.1  | Research Work Summary                                      | 167 |
| 7.2  | Conclusions                                                | 168 |
| 7.3  | Suggestions for Future Work                                | 170 |
| APPI | ENDICES                                                    |     |
| APPI | ENDIX (A): Flow Transducers Datasheets & Certificates      |     |
| APPI | ENDIX (B): Vibration Transducers Datasheets & Certificates |     |
| APPI | ENDIX (C): Results for Test Rig Running Trials             |     |
| APPI | ENDIX (D): Calibration Curves for Orifice Meter & Springs  |     |

APPENDIX (E): Flow Measurements With and Without Control Valve

APPENDIX (F): Hammer Test Results

#### **ARABIC SUMMARY**

# LIST OF FIGURES

| Figure No.                         | Description                                             | Page<br>No. |
|------------------------------------|---------------------------------------------------------|-------------|
|                                    | CHAPTER THREE                                           |             |
| Figure 3.1: Direction o Control Va | f Cartesian Coordinate System for Simulated<br>alve     | 36          |
|                                    | CHAPTER FOUR                                            |             |
| Figure 4.1: An internal            | view for the valve configuration                        | 45          |
| Figure 4.2: Created Me             | esh Views                                               | 46          |
| Figure 4.3: A Tetrahed             | ral Control Volume with Adjacent Cells.                 | 47          |
| Figure 4.4: Flow Charts            | s for Pressure-Based Solution Methods                   | 52          |
| Figure 4.5: Overview o             | f Iterative Time Advancement Method                     | 53          |
| Figure 4.6: Velocity Co            | ontours for valve opening = 5%                          | 57          |
| Figure 4.7: Velocity Co            | ontours for valve opening = 10%                         | 58          |
| Figure 4.8: Velocity Co            | ontours for valve opening = 20%                         | 59          |
| Figure 4.9: Velocity Co            | ontours for valve opening = 30%                         | 60          |
| Figure 4.10:Velocity Co            | ontours for valve opening = 40%                         | 61          |
| Figure 4.11: Stream lin            | e patterns for different valve openings                 | 63          |
| Figure 4.12: Pressure C            | Contours for different valve openings                   | 64          |
| Figure 4.13: Velocity C            | Contours for different valve openings                   | 66          |
| Figure 4.14: Velocity C            | Contours for Transient Solution at Valve Opening =10%   | 69          |
| Figure 4.15: Solution N            | Monitors for Valve Opening = 10%                        | 73          |
| Figure 4.16: Velocity C            | Contours for Plug in Laminar Flow ( Re=100 )            | 75          |
| Figure 4.17:Velocity Co            | ontours for Flat-Face Plug in Turbulent Flow (Re=5*10°) | 79          |
| Figure 4.18: Maximum               | Jet Flow Velocity versus Reynolds Number                | 82          |

| Figure 4.19: Flow Force versus Reynolds Number                                                                                                                             | 83  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.20: Pressure Distributions for different valve openings                                                                                                           | 85  |
| Figure 4.21: Velocity Distributions along the valve plug                                                                                                                   | 90  |
| Figure 4.22: T.K.E. Contours & distributions for different valve openings                                                                                                  | 93  |
| Figure 4.23: Time History for Coefficient of Lift (Cl)                                                                                                                     | 98  |
| Figure 4.24: Comparison between obtained numerical results and previous experimental results for correlation between Reynolds and Strouhal for flow over a smooth cylinder | 98  |
| Figure 4.25: Reynolds Number versus Strouhal Number for Flat-Face Plug in Free Stream                                                                                      | 99  |
| Figure 4.26: Comparison between obtained numerical results for flow over a flat face plug and previous results                                                             | 100 |
| CHAPTER FIVE                                                                                                                                                               |     |
| Figure 5.1: Experimental Test Rig                                                                                                                                          | 102 |
| Figure 5.2: Frontal View for Test Section                                                                                                                                  | 105 |
| Figure 5.3: Descriptive Drawing for Test Section                                                                                                                           | 105 |
| Figure 5.4: Different Globe Control Designs                                                                                                                                | 108 |
| Figure 5.5: Construction Drawing For Original & New Design of the valve's bonnet                                                                                           | 109 |
| Figure 5.6: Disassembled New Bonnet Design                                                                                                                                 | 110 |
| Figure 5.7: Construction Drawings of Main Parts for New Bonnet Design                                                                                                      | 111 |
| Figure 5.8: Dynamic Modeling for the new bonnet design                                                                                                                     | 113 |
| Figure 5.9: Layout Drawing for Orifice Meter                                                                                                                               | 114 |
| Figure 5.10: Wheatstone Bridge                                                                                                                                             | 116 |
| Figure 5.11: S-Shape Compression Load Cell                                                                                                                                 | 121 |
| Figure 5.12: Main Dimensions of S-shape Load Cell                                                                                                                          | 125 |
| Figure 5.13: Calibration Curve for S-shape Load Cell                                                                                                                       | 125 |
| Figure 5.14 :Pulse Hardware System connected to a Laptop via a LAN Cable                                                                                                   | 129 |