ROLE OF RECENT ADVANCES OF HIGH RESOLUTION ULTRASOUND INCLUDING DOPPLER STUDIES AND DYNAMIC EXAMINATION IN THE EVALUATION OF PAINFUL KNEE.A COMPARATIVE STUDY TO MRI

Thesis

Submitted for partial fulfillment of M.D Degree in Radiodiagnosis

BY

Maged Abdelrahman Moustafa Hawana

M.B.B.Ch,M.Sc

Supervised by

PROF. Dr . Nagui Mohamed Abd El Wahab

Professor of Radiodiagnosis Faculty of Medicine Cairo University

PROF. Dr. Hatem Mohamed El Azizy

Assistant Professor of Radiodiagnosis
Faculty of Medicine
Cairo University

PROF. Dr. Ahmed Mahmoud Kholef

Professor of orthopedic surgery
Faculty of Medicine
Cairo University
Faculty of Medicine
Cairo University
2014

دور التطبيقات الحديثة للموجات فوق الصوتية عالية التباين متضمنة تطبيقات الدوبلر و الفحص الديناميكي في تقييم الركبة المؤلمة .دراسة مقارنة مع فحص الرنين المغناطيسي

رسالة مقدمة من

الطبيب

ماجد عبدالرحمن مصطفى هوانه ماجد عبدالرحمن التشخيصية ماجستير الاشعة التشخيصية توطئة للحصول على درجة الدكتوراة في الأشعة التشخيصية

تحت إشراف

الأستاذ الدكتور/ /ناجى محمد عبد الوهاب أستاذ الأشعة التشخيصية كلية الطب- جامعة القاهرة

الأستاذ الدكتور/ حاتم محمد العزيزي أستاذ مساعد الأشعة التشخيصية كلية الطب جامعة القاهرة

الأستاذ الدكتور/ أحمد محمود خليف أستاذ جراحة العظام كلية الطب- جامعة القاهرة

كلية الطب جامعة القاهرة

Acknowledgement

First and foremost, thanks to **GOD**, to whom I relate any success in achieving any work in my life.

I would like to express my deepest gratitude and extreme appreciation to **Dr.Nagui Mohamed Abd El Wahab**, professor of Radiology, Faculty of Medicine, Cairo University for his kind supervision, kind advice, constructive encouragement, generous help through out the whole work which could not be a fact, without his guidance and kind help.

I would like to express my great thanks and gratitude to **Dr. Hatem Mohamed EL Azizy**, Assistant professor of Radiology,

Faculty of Medicine, Cairo University whom I overloaded too much
throughout the whole work, he provided me with continuous
advice and help and was a stimulus for completion of this work.

Also I would like to send special thanks for **Dr. Ahmed Mahmoud Kholef**, professor of orthopedic surgery, Faculty of
Medicine, Cairo University, for his great support, and valuable
assistance throughout the whole work.

I'm also very grateful and thankful for the **patients** who were included in this study, for their great role in bringing out this thesis, further helping other patients in their treatment.

Finally I would like to express my respect, appreciation, and thanks for my **family** for their assistance, encouragement and their prayers for me.

Abstract

This study included 61 patients (39 females and 22 males) with seventy five painful knee joints. They were subjected to Dynamic Ultrasonography and MRI examinations. The preliminary results have shown the great complementary role of dynamic ultrasonography in the diagnosis of different pathological conditions causing knee pain.

(Key Words: dynamic ultrasonography-MRI-knee pain)

Contents

	Page
List of Abbreviation	I
List of Tables	II
List of Figures	IV
Introduction & Aim of Work	1
Review of Literature	
Chapter (1):	4
Anatomy of the knee Joint .	
Chapter (2):	21
Technique and normal Ultrasound anatomy of the knee joint.	
Chapter (3):	42
Technique and Normal anatomy of the knee joint MRI.	
Chapter (4):	51
Sonographic manifestations of painful knee joint pathologies.	
Patients & Methods	91
Results	99
Case presentation	121
Discussion	140
Summary& Conclusion	152
References	154
Arabic Summary	167

List of Abbreviations

ACL	Anterior cruciate ligament
CT	Computed tomography
DVT	Deep venous thrombosis
FOV	Field of view
Gd-DTPA	Gadolinium-diethylenetriamine pentaacetic acid
ITB	Iliotibial band
LCL	Lateral collateral ligament
LS	Longitudinal section
MCL	Medial collateral ligament
MHz	Mega hertz
MRI	Magnetic resonance imaging
MSUS	musculoskeletal ultrasound
PDUS	Power doppler ultrasound
PCL	Posterior cruciate ligament
RA	Rheumatoid arthritis
SI	Signal intensity
STIR	Short time inversion recovery
TE	Time of echo
TR	Time of repetition
TS	Transverse section
3D	Three dimensional
4D	Four dimensional

List of Tables

Tables		Pages
1	Bursae around the knee	7
2	MRI sequences parameters	94
3	the maximum, minimum, median, mean & standard deviation (SD) of the age.	99
4	The frequency, percentage & ratio according to sex.	99
5	The distribution of 278 pathological entities, which were diagnosed by all utilized imaging modalities in 75 knee joints.	100
6	Comparison between US & MRI in the detection of the anterior cruciate ligament injury.	101
7	Comparison between US & MRI in the detection of the posterior cruciate ligament injury.	102
8	Comparison between US & MRI in the detection of the medial collateral ligament injury.	103
9	Comparison between US & MRI in the detection of the lateral collateral ligament injury.	104
10	Comparison between US & MRI in the detection of medial meniscal lesions.	106
11	Comparison between US & MRI in the detection of lateral meniscal lesions.	107
12	Comparison between US & MRI in the detection of the tendinous lesions.	108
13	The distribution of the tendinouse lesions detected.	110
14	Comparison between US & MRI in the detection of the joint effusion	110
15	Comparison between US & MRI in the detection of the synovial thickening.	111

16	Comparison between US & MRI in the detection of the osteoarthritic changes.	111
17	Comparison between US & MRI in the detection of the bony erosions.	112
18	Comparison between US & MRI in the detection of the bony tumours.	113
19	Comparison between US & MRI in the detection of the fractures.	115
20	Comparison between US & MRI in the detection of the bony avascular necrosis.	116
21	Comparison between US & MRI in the detection of the bone marrow odema/contusion.	116
22	Comparison between US & MRI in the detection of the bursal lesions.	117
23	The distribution of the bursal lesions detected.	118
24	Comparison between US & MRI in the detection of the Peri articular soft tissue lesions.	118
25	The distribution of the periarticular lesions detected.	119

List of Figures

Figures		Pages
1	Anterior view of the knee joint	3
2	Anterior view of the knee joint showing the relationship	5
	between the knee capsule and synovium	
3	Lateral view of the knee joint. The synovial cavity has been	6
	distended by injection and the synovial membrane is	
	coloured blue	
4	Bursae around the knee joint. Lateral, posterior and medial	8
	views	
5	Right knee-joint posterior view.	10
6	Right knee-joint, from the front, showing cruciate ligament	11
7	Left knee-joint from behind, showing cruciate ligaments	12
8	Right knee-joint anterior view	13
9	Articular surface from above after removing the femur	15
	showing menisci and ligaments	
10	Transverse (axial) section of the left knee joint to show the	17
	relations of the joint.	
11	Anterior aspect of the knee. Schematic drawing with	21
	corresponding extended-field-of-view longitudinal 12–5	
	MHz US image over the anterior aspect of the knee.	
12	Anterior suprapatellar longitudinal approach	25
13	Anterior infrapatellar longitudinal approach	26
14	Anterior infrapatellar longitudinal approach	26
15	Anterior transverse approach	27
16	Anterior oblique sagital approach	27
17	Anterolateral oblique sagital orientation showing the	28
	bilaminar lateral retinacuIum.	
18	Anterior infrapatellar longitudinal approach showing the	28
	ACL	
19	Anteror suprapatellar transverse approach showing	29
	transverse view image of the anechoic hyaline cartilage.	

20	Medial longitudinal approach showing the MCL	30
21	Medial longitudinal approach showing the triangular,	30
	homogeneous, hyperechoic medial meniscus	
22	Anteromedial longitudinal approach at the proximal tibia	31
	showing the pes anserinus	
23	Lateral longitudinal approach showing the LCL bridging	32
	the lateral femoral condyle (F) and the head of the fibula	
	(FIB).	
24	Lateral longitudinal approach showing the biceps femorus	32
	insertion on the head of the fibula.	
25	Lateral longitudinal approach showing longitudinal view of	33
	the iliotibial band (arrows) as it crosses over the lateral	
	femoral condyle (F) and inserts on Gerdy's tubercle of the	
	tibia (t)	
26	Lateral longitudinal approach showing the triangular	33
	anterior horn of the lateral meniscus.	
27	Lateral longitudinal approach showing transverse scan of	34
	the common peroneal nerve behind neck of fibula	
28	Posteromedial longitudinal approach showing the posterior	35
	horn of the medial meniscus	
29	Posteromedial longitudinal approach showing the PCL	35
30	Posterolateral approach showing the triangular posterior	36
	horn of the lateral meniscus	
31	The popliteal vessels in LS.	37
32	Normal medial and lateral Menisci sagittal sections.	43
33	Normal Cruciate Ligaments sagittal sections	44
34	Normal patellar and quadriceps tendons sagittal section	44
35	Lateral collateral ligament coronal proton density-weighted	45
	MR images with fat saturation demonstrates the LCL	
	(fibular collateral ligament portion), the arcuate ligament,	
	and the tendons of the short and long heads of the biceps	
	Femoris.	
36	Medial collateral ligament coronal T2-weighted MR image	45

	with fat saturation shows the superoinferior extent of the	
	MCL and the deep layer of the MCL, including the	
	, ,	
	meniscofemoral and the meniscotibial ligaments	
37	Axial T1 weighted MR image shows patellar retinacula,	47
	cruciate ligaments and peri-articular tendons.	
38	Long-axis US images shows focal tendinopathy of the	50
	quadriceps tendon.	
39	Longitudinal extended field-of-view US image shows partial-	51
	thickness tear of the quadriceps tendon.	
40	Longitudinal US image shows complete tear of the	51
	quadriceps tendon.	
41	Sagittal fat-suppressed fast spin-echo T2-weighted	52
	demonstrates quadriceps tendinosis.	
42	Sagittal fat-suppressed fast spin-echo T2- weighted full	52
72	thickness quadriceps tendon tear.	32
42	• •	5 2
43	Transverse US image shows rupture of the medial	53
	retinaculum.	
44	Axial MR image shows partial tear of the medial	53
	retinaculum.	
45	Transverse and longitudinal US images shows	54
	posttraumatic suprapatellar bursa hematoma.	
46	sagittal T2-weighted MR imaging reveals a suprapatellar	55
	recess distended by intra-articular effusion.	
47	Longitudinal US image shows Suprapatellar recess intra-	55
	articular effusion with Synovial hypertrophy.	
48	Sagittal US image over the lower pole of the patella and	56
	proximal patellar tendon showing abnormal fluid within the	
	prepatellar bursa with diffuse wall thickening.	
49	sagittal T1- weighted MR images reveal Chronic prepatellar	56
	bursitis.	
50	Longitudinal sonogram shows marked thickening of the	57
30	proximal patellar tendon(Jumper's knee).	31
F1		-
51	Longitudinal sonogram shows patellar tendon rupture	57

52 Sagittal PD FSE MR shows patellar tendinosis .	58
53 Sagittal PD FSE shows patellar tendon rupture.	58
54 A transverse US view shows Osgood – Schlatter .	59
55 saggital PD FSE image shows Osgood – Schlatter .	59
56 Longitudinal US view of an edematous MCL with no	60
structural defect is visible	
57 Coronal fat-suppressed proton density MR image shows	61
thick, edematous medial collateral ligament (MCL), with no	•
intact fibers.	
58 Longitudinal oblique and transverse oblique US images	62
over the tibial insertion of the pes anserinus complex	
demonstrate Pes anserinus bursitis.	
59 Sagittal STIR MR image shows Pes anserinus bursitis in a	62
child with active juvenile idiopathic arthritis.	
60 Coronal US image obtained over the popliteal groove of the	63
femur shows lateral collateral ligament partial tear.	
61 Longitudinal US image shows Biceps femoris tendonitis.	64
62 Coronal fat-suppressed proton density MR image shows	64
Fibular avulsion of the biceps femoris tendon and lateral	L
collateral ligament (LCL).	
63 Split-screen Coronal and transverse US images over the	65
lateral knee demonstrate Iliotibial band friction syndrome.	
64 Coronal and transverse fat-suppressed T2-weighted MR	66
images demonstrate Iliotibial band friction syndrome.	
65 Transverse sonogram images of Baker's cysts.	67
66 Longitudinal US images with schematic drawing correlation	68
reveal a cyst almost completely filled with synovial fronds.	
67 Longitudinal US image reveals a loose body composed of a	68
deep hyperechoic component with posterior acoustic	
shadowing related to the osseous part of the fragment and a	
superficial hypoechoic component corresponding to its	
chondral part.	
68 Longitudinal US image obtained at the middle third of the	68

	calf, caudal to the distal end of the cyst , demonstrates free	
	fluid spreading into the fatty tissue planes(rupture baker's	
	cyst)	
69	Baker cyst: MR imaging appearance. A and b sagittal T2-	69
	weighted MR images demonstrate a typical Baker cyst.	
70	Longitudinal gray-scale US images obtained at the	70
	posterolateral aspect of the knee shows posterior extra-	
	articular ganglion cyst.	
71	Transverse T2-weighted MR images demonstrate Posterior	70
	extra-articular ganglion cyst.	
72	Longitudinal US image obtained at the posteromedial aspect	71
	of the knee show Semimembranosus bursitis.	
73	Transverse US and Sagittal fat suppressed T2WI images	71
	demonstrate small amount of fluid between the popliteus	
	tendon and the lateral femoral condyle , consistent with fluid	
	tracking into the popliteal bursa.	
74	Anterior longitudinal US extended view shows proliferative	73
	synovitis of the knee joint	
75	Proliferative synovitis of the knee joint with obvious intra-	74
	articular power Doppler signal.	
76	Large erosions are visible on the posterior surface of the	74
	femoral condyle in a patient with rheumatoid arthritis	
77	Coronal T2 fat-saturated image shows joint fluid with	75
	intermediate signals because of synovial proliferation and	
	mild edema of the distal femur in a patient with rheumatoid	
	arthritis	
78	Synovial osteochondromatosis. Popliteal cyst is filled with	75
	solid tumour containing calcific foci.	
79	Synovial osteochondromatosis. Sagittal STIR -weighted	76
	image shows Popliteal cyst filled by multiple fragments of	
	loose, heavily calcified osteochondral fragments.	
80	Pigmented villonodular synovitis. Sagittal 12-5 MHz US	76
	images obtained over the popliteal fossa demonstrates an	

	intra-articular ill-defined solid hypoechoic mass causes bone	
	erosion on the posterior tibial plateau	
81	Pigmented villonodular synovitis. Sagittal 12-5 MHz US	77
	images obtained over the popliteal fossa demonstrates an	
	intra-articular ill-defined solid hypoechoic mass causes bone	
	erosion on the posterior tibial plateau	
82	Lipoma arborescens. Transverse US image over the lateral	77
	parapatellar recess demonstrates a large effusion and villous	
	hyperechoic fatty synovial proliferations with a clearly	
	frond-like morphology inside the pouch, resembling the	
	image of a branched tree	
83	Lipoma arborescens.Coronal T1- weighted image shows	78
	high signal intensity arborizing fat.	
84	Medial plica syndrome .short axis US image shows a	78
	hyperechoic longitudinal zone sliding over anterior surface	
	of medial femoral condyle toward hypoechoic patellar	
	cartilage	
85	Medial plica syndrome .Axial fat-suppressed T2-weighted	79
	MR image shows a thick medial plica with associated	
	articular cartilage defect in the medial patellar facet and	
	joint effusion.	
86	Transverse sonogram of the right knee of a patient with	80
	moderate osteoarthritis.	
87	Osteoarthritis. Supra-patellar transverse scan with knee in	80
	maximal flexion shows loss of the normal clarity of cartilage	
	layer together with blurring of the superficial margin of the	
	femoral condylar cartilage	
88	Osteoarthritis. Supra-patellar transverse scan with knee in	80
	maximal flexion demonstrates focal cartilage thinning and	
	marked irregularity of the subchondral bone	
89	Osteoarthritis of the lateral compartment of the left knee.	81
	Transverse scan shows reveals marked thinning of the	
	cartilage of the lateral facet middle third.	