Phytochemical and Biological Studies of genus Olibanum Family Burseraceae, which was introduced into Egypt for folk medicine.

A Thesis presented to
Faculty of Pharmacy, Ain Shams University,
In partial fulfillment for the requirements of
Master Degree in Pharmaceutical Sciences
In Pharmacognosy

By

Asmaa Ibrahim Ali

B. Pharm. Sci. (2004)
Faculty of Pharmacy
Misr International University.

Department of Pharmacongosy
Faculty of Pharmacy
Ain Shams University
Cairo, Egypt.
(2010)

Under the Supervision

of

Professor. Dr. Abdel Nasser Badawi Singab

Professor. Dr. of Pharmacognosy
Vice Dean for the Society Service Affairs &
Environmental Development
Faculty of Pharmacy
Ain Shams University.

Dr. Khaled Meselhey Ibrahim

Lecturer of Pharmacognosy Faculty of Pharmacy Cairo University.

Department of Pharmacongosy
Faculty of Pharmacy
Ain Shams University
Abbassya, Cairo, Egypt

Acknowledgement

I am grateful to God by grace of whom this work was accomplished.

I would like to express my deep appreciation and sincere gratitude to **Prof. Dr. Abdel Nasser Badawi Singab**, Prof. of Pharmacognosy, Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University for his way of supervision, valuable scientific guidance, indispensable advice and for useful efforts throughout the work.

I would like to express my sincere everlasting gratitude to **Dr. Khaled Meselhey Ibrahim**, Lecturer of Pharmacognosy, Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, for his kind and patient supervision, support and unlimited help throughout the course of this work.

Dr. Amani, Sleem., Prof. of Pharmacology, NRC for her help in the study of pharmacological effects and toxicological testing of the unorganized fractions.

I am thankful to the help **Dr.** Aly Ahmedy, Ass. Prof. of Microbiology, Microbiology Department, Faculty of Pharmacy, Cairo University for testing the antibacterial activity.

I am greatful to **Prof. Dr. Lobna Abu Shamaa**, Prof of Immunology department, Faculty of Medicine, Alexandria University in testing the immunstimulant activity.

My deepest thanks to **Prof. Dr. Mohamed Youness Hagagg,** Prof. of Pharmacognosy, the head of the Department of Pharmacognosy at Misr International University, Faculty of Pharmacy Cairo University, for his efforts and unlimited encouragement

My deepest thanks to all my colleagues, for their continuous cooperation and continuous assistance.

Finally, my deepest thanks to my father, my mother, my sisters, whom play a very special part in my life. I owe them my life and success.

ASMAA IBRAHIM ALI

Contents

Subject	Page
Introduction.	1
Review of literature.	3
A. Essential Oil.	4
B. Gum.	9
C. Resin.	10
D. Biological activities.	18
Taxonomy.	22
A. General taxonomy.	22
B. Characters of different <i>Boswellia</i> speciesexudates.	28
Materials, apparatus and methods.	30
1. Materials.	30
1.1. Plant material.	30
1.2. Materials for phytochemical study.	30
1.21.Authentic reference materials.	30
1.2.Material s for chromatography study.	31
1.23.Solvent systems used for TLC.	31
1.24. Visualization for TLC.	31
1.2.5. Columns of different dimensions used.	32
1.3. Materials for biological activities.	32
1.3.1.Extract & fraction s.	32
1.3.2.Experimental animals .	32
1.3.3.Reference drugs & kits .	32
1.3.4.Solid medium for antimicrobial testing.	33
1.3.5.Microorganisms .	33
1.3.6.Materials for immunstimulant testing .	33
2. Apparatus	35
3. Methods.	37
3.1. Phytochemical study.	37
3.1.1. Preparation of the lipoidal matter.	37
3.1.2. Preparation of unsaponifiable matter (USM) and fatty acids (FA).	37
3.1.3. Preparation of GLC of unsaponifiable matter (USM).	37
3.1.4. Methylation & GLC analysis of fatty acid methyl ester (FAME).	38
3.1.5. Preparation and GC/MS analysis of the essential oils.	39

3.1.6. Preparation, characterization and analysis of the gum.	39
3.1.7. Extraction, fractionation & isolation of terpenoidal compounds from the resin.	40
3.2. Biological activities.	41
3.2.1. Determination of median lethal doses (LD_{50}).	41
3.2.2. Analgesic activity.	41
3.2.3. Acute anti-inflammatory activity.	41
3.2.4. Antipyretic activity.	42
3.2.5. Antioxidant activity.	42
3.26.Chronic anti hyperglycemic activity.	42
3.2.7.Hepatoprotective activity .	43
3.2.8. Antiwormal activity.	43
3.2.9. Antimicrobial activity.	44
3.2.10. Immunstimulant activity.	45
Part I. Phytochemical Study of <i>Boswellia carterii</i> Birdwo	od.
Phytochemical screening.	46
1. Preliminary phytochemical screening.	46
1. GC/MS analysis of essential oil	48
1.1. Plant material.	49
1.2. Preparation and GC/MS analysis of the essential oils.	49
1.3. Determination of percentage yield, specific gravity and refractive index.	49
1.4. Results and discussion.	
2. Investigation of lipoidal content	57
2.1. Preparation of lipoidal matter.	58
2.2. Preparation of unsaponifiable matter (USM) and fatty acids (FA).	58
2.3. Preparation of GLC of unsaponifiable matter (USM).	58
2.4. Methylation & GLC analysis of fatty acid methyl ester (FAME).	58
2.5. Results and discussion.	58
3. Investigation of gum content.	63
3.1. Plant material.	63
3.2. Preparation, characterization and analysis of the gum.	63
3.3. Physical and chemical analyses of gum hydrolysate fraction.	63
3.4. HPLC analysis.	63
3.5. Results and discussion.	63
4. Investigation of resin content.	66

4.1. Isolation of terpenoidal compounds from the resin.	67
4.1.1. Preparation of the resin fraction.	67
4.1.2.Fractionation of resirfraction and isolation of triterpenoidal compounds.	67
4.1.3Isolation of diterpenoidal compound from hydrolyzed resin.	67
4.2. Characterization and identification of isolated compounds.	69
4.2.1.Characterization and identification of compound A	69
4.2.2.Characterization and identification of compound B	72
4.2.3.Characterization and identification of compound C	74
4.2.4. Characterization and identification of compound D	76
Part II. Biological Activities on Boswellia carterii Birdwo	od.
1. In vivo studies	80
1.1. Preparation of the fractions.	80
1.2. Toxicity study.	80
1.3. Analgesic activity.	81
1.4. Acute anti-inflammatory activity.	82
1.5. Antipyretic activity.	83
1.6. Antioxidant activity.	84
1.7. Chronic anti-hyperglycaemic activity.	85
1.8. Hepatoprotective activity.	86
1.9. Antiwormal activity on earthworm (<i>Allolobophora caliginosa</i>)	90
2. In vitro studies	92
2.1. Preparation of fractions.	92
2.2. Immunstimulant activity on neutrophiles of human being	92
3. Antibacterial and antifungal activities	94
References	99
Summary	109
Achievement & conclusion	116
الملخص العربي	1
الإنجازات و التوصيات	4

List of Figures

Figure	Title	Page
1.	The Boswellia tree	22
2.	The Boswellia tree producing its exudate the oleogumresin	25
3.	The Boswellia flower	25
4.	Physical characters of different <i>Boswellia</i> species exudates	29
5.	Scheme extraction, fractionation & isolation the components of the oleogumresin of <i>Boswellia carterii</i> Birdwood.	48
6.	Components of the oils, their relative retention times	52
7.	Identified components of the essential oil of <i>Boswellia caterii</i> Birdwood oleogumresin	54
8.	Chemical composition of the oil of Boswellia caterii Birdwood	55
9.	Effect of preparation method of essential oil on percentages of the common compounds obtained from <i>Boswellia carterii</i> Birdwood	56
10	Scheme for lipoidal matter fractionation.	57
11	GLC analysis of USM components	59
12	GLC analysis of FAME components	59
13	Identified components of USM by GLC.	61
14	Percentage of identified HC & sterols	61
15	Identified components of FAME by GLC	62
16	Percentage of identified saturated & unsaturated fatty acids	62
17	Chemical composition of gum hydrolysate of <i>Boswellia carterii</i> Birdwood.	64
18	HPLC Chart of gum hydrolysate of <i>Boswellia carterii</i> Birdwood	65
19	Scheme of extraction, fractionation & isolation of compounds from resin of <i>Boswellia carterii</i> Birdwood.	66
20	FAB-MS (+ve) spectrum of compound A.	71
21	FAB-MS (+ve) spectrum of compound B.	73
22	FAB-MS (+ve) spectrum of compound C.	75
23	FAB-MS (+ve) spectrum of compound D.	77
24	LD ₅₀ of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	80
25	Analgesic activity of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin.	81
26	Acute anti-inflammatory effect of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin.	82

27	Antipyretic effect of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	83
28	Antioxidant effect of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	84
29	Chronic antihyperglycaemic effect of tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	85
30a. 30b. 8c.	Hepatoprotective effect of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	86 87 88
31	Antiwormal activity of tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	90
32	Antiwormal activity of tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	91
33	Immunstimmulant activity of total aqueous and gum sample of <i>Boswellia carterii</i> Birdwood oleogumresin.	92
34	Immunstimmulant activity of total aqueous & gum sample of <i>Boswellia</i> carteriiBirdwood oleogumresin	93
35	Antimicrobial activity of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	94

List of Tables

Table	Title	Page
1.	Volatile oil reported in Boswellia Species.	4
2.	Gum reported in Boswellia species.	9
3.	Resin reported in <i>Boswellia</i> species.	10
4.	Biological activities reported in <i>Boswellia</i> species.	18
5.	Characters of different Boswellia species exudates	28
6.	Solvent systems used for TLC.	31
7.	Conditions of GLC for UNSAP and FAME.	38
8	Results of phytochemical screening of the unorganized product of Boswellia carteriiBirdwood.	46
9.	Identified components of the essential oil of <i>Boswellia caterii</i> Birdwood oleogumresin.	53
10.	GLC Analysis of USM.	60
11	GLC Analysis of Fatty Acids as methyl esters.	60
12.	Identified components of sugars by HPLC.	64
13.	Characterization and identification of compound A	69
14.	Characterization and identification of compound B	72
15.	Characterization and identification of compound C	74
16.	Characterization and identification of compound D	76
17.	LD ₅₀ of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	80
18.	Analgesic activity of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin.	81
19.	Acute anti-inflammatory effect of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin.	82
20	Antipyretic effect of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	83
21.	Antioxidant effect of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	84
22.	Chronic antihyperglycaemic effect of tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	85
2 ā . 2 3 b.	Hepatoprotective effect of the tested samples of Boswellia carterii	86 87
230. 23c.	Birdwood oleogumresin	88
24.	Antiwormal activity of tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	90
25.	Immunstimmulant activity of total aqueous and gum sample of <i>Boswellia carterii</i> Birdwood oleogumresin.	92
26.	Antimicrobial activity of the tested samples of <i>Boswellia carterii</i> Birdwood oleogumresin	94
27.	Summary of Results and Discussion of in vivo & vitro activities	95

ABBREVIATIONS

ABA	Acetyl Boswellic Acid
AKBA	Acetyl Keto Boswellic Acid
ALP	Alkaline phosphatase enzyme
ALT	Alanine transminase enzyme
AST	Aspartate transminase enzyme
BA	Boswellic Acid
BSE	Boswellia serrata Extract
b.w t.	body weight.
CC	Column Chromatography
СҮР	Cytochrome P450
¹³ C-NMR	¹³ C Nuclear Magnetic Resonance.
d	doublet
DMSO	Dimethylsulfoxide
ED	Extraction followed by distillation
FA	Fatty acid
FAB MS	Fast Atom Bombardment Mass Spectrometry
FAME	Fatty Acid Methyl Ester.
FID	Flame Ionization Detector.
FAME	Fatty Acid Methyl Ester
G_0	Glucose level at zero time.
GC	Gas Chromatography
Gc	Glutathione level in control rats.
GC/MS	Gas Chromatography coupled by Mass Spectrum
GLC	Gas Liquid Chromatography
Gt	Glutathione level in treated rats.
G _t	Glucose level at certain time after administration.
НС	Hydrocarbon
HD	Hydro distillation
¹ H-NMR	¹ H Nuclear Magnetic Resonance.

HPLC	High Performance Liquid Chromatography
HPTLC	High Performance Thin Liquid Chromatography
IA	Incensole Acetate.
IN	Incensole.
<i>J</i> -value	Coupling constant
KBA	Keto Boswellic Acid
KI	Kovat's Index
L_0	Liver enzymes at zero time.
LD ₅₀	Median Lethal Dose
L_{t}	Liver enzymes at certain time after adminstration.
m.p.	Melting Point
Mc	Mean odeama in control rats.
Mol. wt.	Molecular weight.
Mt	Mean odeama in treated rats.
NF	Nuclear Factor
$R_{\rm f}$	Retardation factor
R _t	Retention time
SFE	Super Critical Fluid Extraction
SPME	Solid Phase Micro Extraction
Spp.	Species
T ₀	The rectal temperature at zero time
TLC	Thin Layer Chromatography
T _t	The rectal temperature at interval time of administration.
USM	Unsaponifiable matter
UV	Ultra Violet
+Ve.	Positive.
- Ve.	Negative.
$\mathbf{V_0}$	The minimal voltage at zero time.
VLC	Vacuum Liquid Chromatography
Vt	The minimal voltage at certain time interval.

Introduction

Introduction

Frankincense is a generic name for the oleogumresin and tree of approximately 25 different known *Boswellia* species. Frankincense is also commonly known as "Olibanum", or "Oil of Lebanon from the Arabic word for the resin, "Laben" or "Luban" which is a word that also means "white" or "cream."

Burseraceae comprises 18 genera and about 540 species of flowering plants, also known as the incense tree family. The family includes trees and shrubs, native to tropical regions of Africa, Asia, and the Americans. Some members of the family produce fragrant resins used as incense or perfume, most notably frankincense and myrrh.

Boswellia species are small trees that grow wildly and prefer moist climates. Frankincense is used as anti-inflammatory in many cultures and fast becoming popular in the West for such treatments. Frankincense is traditionally used as antiseptic, anti-inflammatory and as expectorant to those suffering from asthma. It has been used extensively as an antibacterial and antifungal treatment for mature skin and acne and to heal wounds and scars. Certain phytochemical and biological studies were carried out on certain species of Boswellia such as anti-inflammatory effect, anticancer, immunomodulatory, hepatoprotective, antidiabetic and antibacterial.

On the other hand, certain phytochemical and biologicalical studies were carried out on *Boswellia carterii* Birdwood (Somalia), (Bursereaceaes) [Duwiejua, M.; *et al* (1993), Jing, Y.; *et al* (1992, 1993, 1999), Qi, Z.; *et al* (1999), Hussein, G.; *et al* (2000), Liu, X.; Qi, Z. H. (2000), Badria, F.A.; *et al* (2003), Chevrier, M. R.; *et al* (2005), Fan, A. Y.; *et al* (2005), Hamm, S.; *et al* (2005), Akihisa, T.; *et al*

(2006), Banno, N.; *et al* (2006), Frank, A.; Unger, M. (2006), Buchele, B.; *et al* (2006), Camarda, L.; *et al* (2007), Lu, M.; *et al* (2008), Yuan, H. Q.; *et al* (2008), Frank, M. B.; *et al* (2009)], It was deemed of interest to prove the phytochemical and biological studies of this unorganized drug.

Aim of work:

Although there are certain reported studies on *Boswellia* species, little was carried out on *Boswellia carterii* Birdwood (Somalia), (Bursereaceaes) relative to other species. So, it is deemed of interest to investigate the mechanism of their medicinal uses as well as the phytoconstituents of the unorganized product including oleoresin, essential oil, resin & gum.

The present work includes:

- 1. Literature survey.
- 2. Collection & authentication of the drug under investigation.
- 3. Phytochemical screening of the Olibanum.
- 4. Investigation of the lipoidal matter.
- 5. Study of the chemical composition of volatile oil by GC/MS analysis.
- **6.** HPLC analysis of the gum.
- 7. Isolation & identification of the isolated compounds from the resin by spectroscopic analysis.
- **8.** Biological screening of the different extracts & fractions of the unorganized product to ascertain their activities.