EFFECT OF TREATED NATURAL SEDIMENTS ON NUTRIENTS AVAILABILITY AND PLANTS GROWN IN NEWLY RECLAIMED LANDS

By

NAIMA ABD EL-FATAH ABD EL-RAZEK ISMAIL

B. Sc. Agic.Sc. (Soil Science), Ain Shams University, 1980

A thesis submitted in partial fulfillment of the requirements for the degree of

> MASTER OF SCIENCE in Agricultural Science (Soil Science)

Department of Soil Science
Faculty of Agriculture
Ain Shams University

Approval Sheet

EFFECT OF TREATED NATURAL SEDIMENTS ON NUTRIENTS AVAILABILITY AND PLANTS GROWN IN NEWLY RECLAIMED LANDS

By

NAIMA ABD EL-FATAH ABD EL-RAZEK ISMAIL

B. Sc. Agic.Sc. (Soil Science), Ain Shams University, 1980

This thesis for M.Sc. degree has been approved by:

Dr.	Hatem Abdel – Wahab El – Attar
	Prof. Emeritus of Soil Science, Faculty of Agriculture, Alexandria University
Dr.	Adel El-Sayed El-Leboudi
	Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams University
Dr.	Abdel -Smad Salem Ismail Hegazy
	Prof. Emeritus of Soil Science, Faculty of Agriculture, Ain Shams University

Date of Examination: 5/10/2010

EFFECT OF TREATED NATURAL SEDIMENTS ON NUTRIENTS AVAILABILITY AND PLANTS GROWN IN NEWLY RECLAIMED LANDS

By

NAIMA ABD EL-FATAH ABD EL-RAZEK ISMAIL

B. Sc. Agic.Sc. (Soil Science), Ain Shams University,1980

Under the supervision of:

Dr. Abdel -Smad Salem Ismail Hegazy

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agricultur, Ain Shams University (Principal Supervisor)

Dr. Shaban Mohamed Abdel -Rasuol

Head of Research of Soil Science, Soil and Water Research Institute, Agricultural Research Center

رسالة ماجستير

اسم الطالبية: نعيمة عبد الفتاح عبد الرازق إسماعيل عنوان الرسالة: تأثير الرواسب الطبيعية المعالجة على تيسير العناصر الغذائية والنباتات النا مية في أراضي حديثة الاستصلاح اسم الدرجية: ماجستير في العلوم الزراعية (أراضي)

لجنة الإشراف:

د. عبد الصمد سالم إسماعيل حجازي أستاذ الأراضي المتفرغ ، قسم الأراضى ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

> د. شعبان محمد عبد الرسول رئيس بحوث الأراضي ، معهد بحوث الأراضي والمياه ، مركز البحوث الزراعية

> > تاريخ البحث: ٢٠٠٤/٢/٩ الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ (٢٠١٠ / ١٠٠٥ موافقة مجلس الكلية موافقة مجلس الكلية (٢٠١٠ / ٢٠١٠ / ٢٠١٠ / ٢٠١٠ /

صفحة الموافقة على الرسالة

تأثير الرواسب الطبيعية المعالجة على تيسير العناصر الغذائية والنباتات النامية في أراضي حديثة الاستصلاح

رسالة مقدمة من نعيمة عبد المرازق اسماعيل بكالوريوس علوم زراعية (أراضي) ، جامعة عين شمس ، ١٩٨٠

للحصول على درجة الماجستير في العلوم الزراعية (أراضي)

وقد تمت مناقشة الرسالة والموافقة عليها

اللجنة:

. حاتم عبد الوهاب العطار
أستاذ الأراضى غير المتفرغ ، كليه الزراعة ، جامعه الأسكندرية
عادل السيد الليودي
. عادل السيد اللبودي أستاذ الأراضي المتفرغ ، كلية الزراعة ، جامعة عين شمس
. عبد الصمد سالم إسماعيل حجازى

تاريخ المناقشة: ٥ /١٠ / ٢٠١٠

تأثير الرواسب الطبيعية المعالجة على تيسير العناصر الغذائية والنباتات النامية في أراضي حديثة الاستصلاح

رسالة مقدمة من **نعيمة عبد الفتاح عبد الرازق إسماعيل** بكالوريوس علوم زراعيه (أراضي) ، جامعة عين شمس ، ١٩٨٠

للحصول على درجة الماجستير في العلوم الزراعية (أراضي)

قسم الأراضي كلية الزراعة جامعة عين شمس

ABSTRACT

Naima Abd-Elfatah Abd-Elrazek Ismail: Effect of Treated Natural Sediments on Nutrients Availability and Plants Grown in Newly Reclaimed Lands. Unpublished M. Sc. Thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2010.

This study was carried out to indicate the effect of application of different types and rates of Egyptian natural sediments either loaded or unloaded by certain micronutrients on plant growth in calcareous and sandy soils. Therefore, three raw natural sediments, bentonite, vermiculite and rock phosphate were collected and cleaned from their impurities. The behavior of these sediments in water was evaluated through their subjection to swelling, different times, along with variable temperature and pH values. Also, these sediments were chemically loaded by Cu, Mn and Fe ions from CuSO₄, MnSO₄ and FeSO₄, respectively, under different concentrations, temperature and pH values. Moreover, a pot experiment was carried out to evaluate the effect of application for different rates of these unloaded and loaded sediments by the studied heavy metals. The study of the effect of heavy metal ions on the growth and total uptake by Zea-maize plants grown on sandy and calcareous soils will be cleared. The main results indicated that the highest swelling, adsorption and release of the studied heavy metal ions along with different sediment swelling in water took the following order:

bentonite> vermiculite > rock phosphate

Moreover, the growth and total micronutrients uptake of the studied sandy and calcareous soils; under investigation; were highly affected positively.

Key Words: bentonite, vermiculite and rock phosphate sediments; iron, manganese and copper ions; zea maize,

ACKNOWLEDGEMENTS

The authoress would like to express her utmost appreciation and heart full thanks to **Prof. Dr. Abdel Smad Salem Ismail** Prof. of Soil Science for giving me the opportunity to work with him, and for providing his continuous support throughout the entire study. This work would not have been possible without his wide experience and knowledge. The authoress also appreciates the support, guidance, and encouragement given by **Prof. Dr. Shaban Mohamed Abdel Rasoul** Prof. of Soil Science, Soil, Water and Environment Res. Institute Agric. Res.Center. Special thanks to **Prof, Nabil A. El-kelesh and Dr.Usama Slah El-Deen** for support and encouragement during the entire study and for their kindness and guidance during research. Thanks are also due to all my job colleges in my for their kind help during study. Finally sincere appreciation, love, and gratitude to my sons who continue to love, encourage and support through every performed challenge.

CONTENTS

			Page
	LIST	OF TABLES	${f v}$
	LIST	OF FIGURES	VII
1.	INTRO	ODUCTION	1
2.	REVII	EW OF LITERATURE	3
	2.1.	Swelling of natural sediments	3
	2.2.	Adsorption of heavy metal ions on the sediments	4
	2.3	Releasing of metal ion from loaded sediment	6
	2.4.	Effect of heavy metal ions, loaded or unloaded, on	٧
		sediment, for soils and plants	
3.	MATE	ERIALS AND METHODS	10
	3.1.	Some characteristics of the investigated natural	10
		sediments	
	3.1.1.	Swelling in water	10
	3.1.2.	Adsorption capacity	11
	3.1.3.	Releasing ions	11
	3.2.	Green-house pot experiment	12
	3.2.1.	Application of Cu in combination with natural sediments	12
	3.2.2.	Application of Mn in combination with natural sediments	12
	3.2.3.	Application of Fe in combination with natural sediments	12
	3.3.	Techniques of the pot-experiment	13
	3.4.	Methods of analyses	14
	3.4.1.	Soil and sediment analyses	14
		a-Soil physical analysis	14
		b-Soil and sediments chemical analysis	14
	3.4.2.	Plant analysis	15
	3.4.3.	Statistical analysi	15
4.	RESU	LTS AND DISCUSSION	18

	4.1.	Factors affecting water-swelling of the sediments	18
	4.1.1.	Effect of time	18
	4.1.2.	Effect of pH	20
	4.1.3.	Effect of temperature	21
	4.2.	Factors affecting the adsorption capacity of the	24
		sediments	
	4.2.1.	Effect of concentration ions and pH	24
	4.3.	Factors affecting the release ions from the sediments	29
	4.3.1.	Effect of time	29
	4.3.2.	Effect of pH	31
	4.4.	Greenhouse Experiment	35
	4.4.1.	Application of Cu in combination with natural sediments	35
		a .plant height and dry matter of maize	35
		b .Cu concentration and its total uptake by maize	40
	4.4.2.	Application of Mn in combination with natural sediments	40
		a . Plant height and dry matter of maize	40
		b. Mn concentration and its uptake by maize	40
	4.4.3.	Application of Fe in combination with natural sediments	45
		a . Plant height and dry matter of maize	45
		b . Fe concentration and its uptake by maize	50
	4.5.	Residual micronutrients in soils	51
	4.5.1.	Fe. Residual	51
	4.5.2.	Mn. Residual	51
	4.5.3.	Cu. Residual	51
5.	SUMN	MARY	54
	5. I.	Laboratory studies	54
	5. II.	Greenhouse studies	54
6.	REFE	RENCES	57
7.	ARAB	SIC SUMMARY	

	LIST OF TABLES	Page
Table (1)	The main physical and chemical properties of the sandy and	
	calcareous soil samples	16
Table (2)	The main chemical properties of the three Investigated	
	sediment samples	17
Table (3)	Effect of time on water swelling % for different sediments	19
Table (٤)	Effect of pH on water swelling % for different sediments	20
Table (5)	Effect of temperature (0 c) on water swelling % for different	
	sediments	23
Table (6)	Freundlish adsorption isotherm representing the relation between	
	initial ion concentration (ppm) and the amount adsorbed (m mole	
	/g) onto bentonite, vermiculite and rock phosphate	
	sediments	25
Table (7)	The empirical constants (n) and (k) for Freundlish adsorption	
	isotherm for different metal ions Cu, Mn and Fe adsorbed by	
	bentonite, vermiculite and rock phosphate sediments	27
Table (8)	Effect of pH values on amount releasing % of Cu from different	
	sediments	
Table (9)	Effect of pH values on amount releasing % of Fe from different	32
	sediments	
Table (10)	Effect of application of natural sediments in combination with	33
	Cu on the growth and nutrimental status of maize (Zea mays L)	
	grown on sandy and calcareous soils for 6-weeks	34
Table (11)	Effect of application of natural sediments in combination with	
	Mn on the growth and nutrimental status of maize (Zea mays	
	L)grown on sandy and calcareous soils for 6-weeks	37
Table (12)	Effect of application of natural sediments in combination with	
	Fe on the growth and nutrimental status of maize (Zea mays L)	
	grown on sandy and calcareous soils for 6-weeks	42

Table(13)	Effect of application of different Cu, Mn and Fe -levels on their	
	residual available Cu, Mn and Fe after growing maize for 45	
	days for sandy and calcareous soils	47
Table(14)	Effect of application of different Cu, Mn and Fe -levels on their	
	residual available Cu, Mn and Fe after growing maize for 45	
	days for sandy and calcareous soils	52

	LIST OF FIGURES	Page
Fig. (1)	Effect of time on water swelling % for different sediments	19
Fig. (2)	Effect of pH on water swelling % for different sediments	21
Fig. (3)	Effect of temperature (0 c) on water swelling % for different sediments	23
Fig. (4)	Freundlish adsorption isotherm curves as a relation between initial ion	
	concentration (ppm) and the amount adsorbed (m mole /g) onto (a)	
	bentonite, (b) vermiculite and (c) rock phosphate sediments	26
Fig. (5)	Effect of time (hours) on the amount releasing % of different metal ions	
	(2.5g/L) for bentonite, vermiculite and rock phosphate sediments	30
Fig. (6)	Effect of pH values on amount releasing % of Cu from different	
	sediments	32
Fig. (7)	Effect of pH values on amount releasing % of Mn from different	
	sediments	33
Fig. (8)	Effect of pH values on amount releasing % of Fe from different	
	sediments	34
Fig. (9)	Effect of application of natural sediments in combination with Cu on	
	the plant height/cm and dry weight(g/plant) of maize shoots, 6-weeks,	
	grown on sandy and calcareous soils	38
Fig. (10)	Effect of application of natural sediments in combination with <i>Cu</i> on	
	Cu-concentration (ppm) and uptake mg/plant of maize shoots,6-	
	weeks, grown on sandy and calcareous soils	39
Fig. (11)	Effect of application of natural sediments in combination with Mn on	
	the plant height/cm and dry weight(g/plant) of maize shoots, 6-	
	weeks, grown on sandy and calcareous soils	43
Fig. (12)	Effect of application of natural sediments in combination with <i>Mn</i> on	
	Mn-concentration (ppm) and uptake mg/plant of maize shoots,6-	
	weeks, grown on sandy and calcareous soils	44
Fig. (13)	Effect of application of natural sediments in combination with Fe^{++} on	
	the plant height/cm and dry weight(g/plant) of maize shoots, 6-weeks,	
	grown on sandy and calcareous soils	48

Fig. (14)	Effect of application of natural sediments in combination with Fe^{++} on	
	Fe-concentration (ppm) and uptake mg/plant of maize shoots,6-	
	weeks, grown on sandy and calcareous soils	49
Fig. (15)	Effect of application of different Cu-levels on their residual available	
	Cu (ppm) after growing maize for 45 days on sandy and calcareous	
	soils	53
Fig. (16)	Effect of application of different Mn-levels on their residual available	
	Mn (ppm) after growing maize for 45 days on sandy and calcareous	
	soils	53
ig. (17)	Effect of application of different Fe-levels on their residual available	
	Fe (ppm) after growing maize for 45 days on sandy and calcareous	
	soils	53