

Ain Shams University
Faculty of Science
Department of Biochemistry

Biochemical Study on the Effect of Metallo-surfactant

as

Anticancer Drug

Thesis

Submitted in the Partial Fulfillment for the Requirement

of

M.Sc. Biochemistry

By

Ahmed Mohsen Mohammed

(B.Sc. Biochemistry / Chemistry June (***)

Faculty of Science - Ain Shams University

Department of Biochemistry

Faculty of science

Ain Shams University

(۲۰۱۰)

Ain Shams University
Faculty of Science
Department of Biochemistry

Biochemical Study on the Effect of Metallo-surfactant as Anticancer Drug

Thesis

Submitted in the Partial Fulfillment for the requirement of

M.Sc. Biochemistry

By

Ahmed Mohsen Mohammed

(B.Sc. Biochemistry / Chemistry June Y · · Y)

Faculty of Science - Ain Shams University

Under Supervision

of

Prof. Dr. Gilane M. Sabry

Prof. of Biochemistry
Biochemistry Department
Faculty of Science
Ain Shams University

Prof. Dr. Nadia I. Zakhary

Prof. of Medical Biochemistry

Ex. Head of Cancer Biology Department

National Cancer Institute

Cairo University

بسم الله الرحمن الرحيم

"رب أوزعني أن أشكر نعمتك التي أنعمت علي و على والدي و أن أعمل صالحا ترضاه و أدخلني برحمتك في عبادك الصالحين"

صدق الله العظيم ١١١٩ النمل....أية رقم ١١١٩

For

My Father,
My Mother,
My Brother,
and
My Sister

جامعة عين شمس كلية العلوم قسم الكيمياء الحيوية

أسم الطالب : أحمد محسن محمد موسى

الدرجة العلمية : ماجيستير في العلوم

القسم التابع له : قسم الكيمياء الحيوية

إسم الكلية : كلية العلوم

الجامعة : جامعة عين شمس

سنة التخرج : يونيو ٢٠٠٣

Acknowledgement

First and foremost all praise to **Allah** the most gracious and most merciful, **who** guides us to the straight path, for all **his** gifts thought life and for helping to complete this work

And the peace and greeting are upon the prophet Mohamed as well as his family and his companions.

I wish to express my deepest and warmest thanks to **Prof. Dr. Nadia Iskandar Zakhary**, Professor and Ex. head of Medical Biochemistry,

Biochemistry unite, Cancer Biology Department, National Cancer Institute,

Cairo University for her continuous support, solving and facilitating all the difficulties.

I feel very much grateful to Prof. **Dr. Gilane Mohamed Sabry**Professor of Biochemistry, Biochemistry Department, Faculty of Science,
Ain Shams University, for her kind help and her cooperation.

I wish to express my sincere appreciation, infinite gratitude to **Prof. Dr. Abd Ell Fattah Mohsen Badawi**, Professor of Applied Chemistry, Egyptian Petroleum Institute, for his great support, his meticulous supervision and encouragement.

I feel very much grateful to **Dr.** / **Salwa Mohamed Morsy** Assistant Professor of Applied Organic Chemistry, Surfactant laboratory, Petrochemical Department, Egyptian Petroleum Institute for her great support her cooperation.

Also, I wish to express my deepest acknowledgement and infinite appreciation, to **Dr.** / **Mervat Mohamed Fouad** lecturer of tissue culture, Pathology Department, National Cancer Institute, Cairo University for her powerful acknowledgement in the histopathological examinations for the liver tissues.

Abstract

Ahmed Mohsen Mohamed." Biochemical Study on the Effect of Metallo-surfactant as Anticancer Drug"

M.Sc. Thesis, Ain Shams University, Faculty of Science, Department of Biochemistry.

The study aimed to synthesize and evaluate the antitumor and antibaterial effect of copper cetyl trimethyl ammonium bromide and Cu-CTAB loaded cyclodextrin nano-analogue (CD-CTAB). The nano-analog was synthesized by physical loading using grinding with ball mill. The ratio between Cu-CTAB and cyclodextrin oligosaccharide was 1 Cu-CTAB: 3 cyclodextrin. The particle size of the nano-analogue was determined using the transmitted electron microscope (TEM). The structure was evident using FTIR, NMR and inductive coupled plasma, the surface properties of Cu-CTAB were evaluated and used to explain the penetration power inside the cancer and bacterial cells. The *in vitro* anticancer activity of the compounds on Ehrlich ascites carcinoma (EAC), colon cancer cells (HCT-119), liver cancer cells (Hepg-2), breast cancer cells (MCF-7), and cervix cancer cells (Hela) were investigated using MTT assay. The in vivo cardiotoxic effect estimated by measuring lactate dehydrogenase phosphokinase enzymes in rats treated with the compounds under investigation in comparison with rats treated with Doxorubicin. The Cu-CTAB showed a little effect against the cardiac muscle compared to the doxorubicin. The *in vivo* antitumor activity, liver function, hematological and antioxidant status of the compounds under investigation were evaluated using Ehrlich ascites carcinoma (EAC) bearing female mice. After 24 h of

tumor inoculation, a tenth of the LD₅₀ of Cu-CTAB was inoculated day after day for one week. After administration of the last dose, mice were sacrificed to investigate for alterations in the hematological profile, liver biochemical parameters, antioxidant status and histopathological changes. The results showed Cu-CTAB decrease in tumor volume, body weight and increased the mean survival time, thereby increasing life span of EAC tumor bearing mice. Hematological profile reverted to more or less normal levels in the target compounds except for the doxorubicin group which showed a severe neotropenia. Treatment with Cu-CTAB and its nano-analogue slightly increased the levels of superoxide dismutase which was more in case of doxorubicin group. The histopathological examinations of the liver specimens showed acute inflammation in doxorubicin group compared with a mild effect in Cu-CTAB and its nano-analogue treated mice. The Cu-CTAB and its nano-analogue posses a promising antitumor effect and a less cardiovascular side effects as compared with the doxorubicin. The antibacterial effect of Cu-CTAB was also screened against Desulfonamonas pigra, Escherichia coli and Staphylococcus aureus by measuring the inhibition zone, also the antifungal effect was screened against Candida albicans by the same manner. The antibacterial and antifungal activity of the Cu-CTAB showed a potential activity comparable to the parent compound cetyl trimethyl ammonium bromide (CTAB).

Keywords: Antitumor agents, human cancer cell lines, *in vitro* anticancer activity, *in vivo* anticancer activity, nano-analog, surfactant complex.

Contents

Abstract	
List of Tables	
List of Figures	
List of Abbreviations	
Introduction	
Aetiology of cancer	
1- Chemical carcinogens.	
2- Ionizing radiation	
3- Viral or bacterial infection.	
4- Hormonal imbalances	
5- Immune system dysfunction	
6- Heredity	
Modes of cancer treatments	
1-Surgery	
2-Radiation treatment	
3- Targeted therapy	
a- Enzyme inhibitors	
b- Apoptosis-inducing drugs	
c- Angiogenesis inhibitors	
4- Immunotherapy	
5- Gene therapy	
6- Bone marrow and stem cell transplantation	
7- Chemotherapy	
Types of chemotherapeutic drugs	
1- Alkylating agents	
2- Anti-metabolites	
3- Plant alkaloids	
4- Antitumour antibiotics	
Surfactants	
Types of surface active agents	
1- Anionic surface active agents.	
2- Cationic surface active agents.	

3- Nor	n-ionic surface active agents
4- Am	photeric surface active agents
5- Pol	ymeric surfactants
Uses of st	urfactants
Antitumo	or surfactant
Surfacta	nts and drug delivery system
Nano-par	rticles and drug delivery
Nano-par	rticles based cyclodextrin in drug delivery
Biologica	l activity of cationic surfactants
Structure	e of cationic surfactants and its relation to biocidal function
1- Cha	in length of the hydrophobic group
2- Nat	ure of anion
3- Nat	ure of central atom.
4- Cat	ionic complexes.
Mechanis	sm of biocidal action of cationic surfactants
Biocidal	Activity of Quaternary ammonium compounds in petroleum
field	
Aim of t	the work
Materia	ls and Methods
1- Ma	terials
a- l	Orugs and chemicals
	Experimental animals
	ethods
I- (Chemical studies
a	- Synthesis of Cu-CTAB and its cyclodextrin nano-analogue
	Synthesis of Cu-CTAB.
	Synthesis of Cu-CTAB loaded cyclodextrin nano- analogue
	b- Surface Tension Measurements
	Interfacial Tension Measurements
	Determination of Critical Micelle Concentration (CMC)
	Emulsifying power
	Efficiency (PC ₂₀)
	Effectiveness (II _{cmc})
	Maximum surface excess (Γ_{max})

Minimum surface area (A min)	48
The standard free energies of micellization ΔG^{o}_{mic} and adsorption	
$\Delta G^{o}_{$ ads	48
II- Antitumor activity	49
1. In vitro studies	49
2. In vivo studies	50
A- Evaluation of the cardiotoxic effect in vivo	51
Cardiac serum enzymes	52
1- Determination of Aspartate aminotransferase	52
2- Determination of Lactate dehydrogenase enzyme	54
3- Determination of Creatine phosphokinase enzyme	55
B- Determination of LD ₅₀ using female albino mice	57
C- Investigation of the antitumor activity	58
The body weights	61
The tumor volume	61
Survival time	62
III- Biochemical analyses	62
a- Liver function test	62
1- Determination of total proteins (Biuret Method)	62
2- Determination of Aspartate aminotransferase (AST)	64
3- Determination of alanine transaminase enzyme (ALT)	64
4- Determination of alkaline phosphatase (ALK)	66
b- Determination of oxidative stress	67
D-Blood parameters	70
1- Determination of blood hemoglobin	70
2- Determination of white blood cells counting (WBC _S)	71
3- Determination of differential count of white blood cells	73
E- Antimicrobial activity	74
Summary of Materials and Methods	77
Results	78
A- Synthesis of Cu-CTAB and CD-CTAB	78
a- Chemical structure and analyses	78
b- Surface properties	80
Surface and interfacial tension.	80

Critical Micelle Concentration (CMC)	80
Interfacial tension	81
Emulsifying power	81
Foam properties.	81
Effectiveness (II _{cmc})	81
Efficiency (PC ₂₀)	81
Maximum surface excess (Γ_{max})	81
Minimum surface area per molecule (A min)	82
The standard free energies of micellization (ΔG^{o}_{mic}) and adsorption (ΔG^{o}_{ads})	82
B- In vitro studies	83
C- In vivo studies	87
a- Investigation of cardiotoxicity using rats	87
b- Determination of LD ₅₀ using mice	90
Investigation for the anticancer effect of the Cu-CTAB and CD-CTAB	90
c- Body weight	90
d- Tumor volume	92
e- Animal survival rate	94
f- Liver functions	96
g- Hemoglobin concentration measurement	98
h- White blood cells (WBCs)	98
i- Differential count of white blood cells	99
j- Oxidative stress	103
k- Histopathological examination	105
Macroscopic examination	105
Microscopic examination	107
l- Antimicrobial and Antifungal Activities	118
Discussion	119
English Summary	139
References	146
Arabic Summary	

List of Abbreviations

Abb.	Full Name
ADP	Adenine diphosphate
AIDS	Aquired immune deficiency virus
ALK	Alkaline phosphatase enzyme
ALT	Alanine transaminase enzyme
A_{min}	Minium surface area
CD	Cyclodextrin
CMC	Critical micelle concentration
CPC	Cetyl pyrdinium chloride
СРК	Creatine phosphokinase
CT	Computarized Tamography
CTAB	Cetyl trimethyl ammonium bromide
$CuCl_2$	Copper dichloride
CD-CTAB	cetyl trimethyl ammonium bromide copper complex loaded
	cyclodextrine nano-analogue
Cu-CTAB	cetyl trimethyl ammonium bromide copper complex
Cu-SOD	Copper Superoxide dismutase enzyme
Cu-Zn SOD	Copper zinc superoxide dismutase enzyme
DMSO	Dimethyl sulfoxide
DNPH	Dinitro phenyl hydrazine
DNPH-one	Dinitro phenyl hydrazone
DOX	Doxorubicin
EAC	Ehrlich ascites carcinoma
EDTA	Ethylene diaminetetraacetic acid
ELISA	Enzyme linked immunosorbant assay
FeS	Ferrous sulfide

Fourier transformed infrared
Gulf petroleum company
Proton Nuclear Magnetic Resonance
Hepatitis B virus
Humane colon cancer cell line
Humane cervix cancer cell line
Humane liver cancer cell line
Human Deficiency virus
Hydrophilic lipophilic balance
Humane papilloma virus
Inhibition concentarion 50
Inductive coupled plasma
Long chain triglycrides
Lethal dose 50
Lactate dehydrogenase enzyme
Mean survival time
Humane breast cancer cell line
Medium chain triglycrides
Microbial increased corrosion
Newton meter
(3-(4,5-dimethyl thiazol-2-yl) 2,5 diphenyl tetrazolium
bromide
Avogadro's number
Nicotinamide adenine dinucleotide
Nicotinamide adenine dinucleotide Reduced
Nicotinamide adenine dinucleotide phosphateReduced
National Cancer Institute
Efficiency
Quaternary ammonium compounds

R	General gas constant
RF	Radio frequancy
ROS	Reactive oxygen species
RPMI-1640	Growth media
SGOT	Serum glutamate oxaloacetate transaminase enzyme
SGPT	Serum glutamate aspartate transaminase enzyme
SOD	Superoxide dismutase enzyme
SRB	Sulfate reducing bacteria
TEM	Transmission electron microscope
VEGF	Vascular epidermal growth factor
v-onc	Viral oncogene
V_s	Volume of sample
V_t	Volume of test
Zn-SOD	Zinc Superoxide dismutase
γ	Surface tension
ΔG^{0}_{ads}	Free energy adsorbed
$arDelta G^{ heta}_{\ mic}$	Free energy micellized
$oldsymbol{arepsilon}$	Molar absorbitivity
μkat/L	Micro katal per liter
Π_{cmc}	Effectiveness
Γ_{max}	Maximum surface excess