INFLUENCE OF CERTAIN FACTORS AFFECTING THE EFFICIENCY OF SOME BIOLOGICAL AGENTS IN COMBATING PLANT PARASITIC NEMATODES

By

ESRAA OTHMAN ABD-ELRA'OUF IBRAHIM

B.Sc. Agric. Sci. (International Agriculture), Fac. Agric., Cairo Univ., Egypt, 2003

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Zoology and Agricultural Nematology (Nematology)

Department of Zoology and Agricultural Nematology
Faculty of Agriculture
Cairo University
EGYPT

2010

APPROVAL SHEET

INFLUENCE OF CERTAIN FACTORS AFFECTING THE EFFICIENCY OF SOME BIOLOGICAL AGENTS IN COMBATING PLANT PARASITIC NEMATODES

M.Sc. Thesis In Agric. Sci. (Agricultural Nematology)

By

ESRAA OTHMAN ABD EL-RA'OUF IBRAHIM

B.Sc. Agric. Sci. (International Agriculture), Fac. Agric., Cairo Univ., Egypt, 2003

Approval Committee

Dr. MAHMOUD HASSAN EL-HAMAWI Head of Research of Plant Pathology, Agric. Research Center
Dr. AHMED ABD EL-SALAM FARAHAT
Dr. AHMED AHMED OSMAN FADL Professor of Nematology, Fac. Agric., Cairo University

Date: 29 /7 /2010

SUPERVISION SHEET

INFLUENCE OF CERTAIN FACTORS AFFECTING THE EFFICIENCY OF SOME BIOLOGICAL AGENTS IN COMBATING PLANT PARASITIC NEMATODES

M.Sc. Thesis
In
Agric. Sci. (Agricultural Nematology)

By

ESRAA OTHMAN ABD EL-RA'OUF IBRAHIM

B.Sc. Agric. Sci. (International Agriculture), Fac. Agric., Cairo Univ., 2003

SUPERVISION COMMITTEE

Dr. AHMED AHMED OSMAN FADL Professor of Nematology, Fac. Agric., Cairo University

Dr. ALI HASSAN HUSSIEN
Professor of Nematology, Fac. Agric., Cairo University

Name of Candidate: Esraa Othman Abd El-ra'ouf Ibrahim Degree: M.Sc. Title of Thesis: Influence of Certain Factors Affecting The Efficiency of Some Biological

Agents in Combating Plant Parasitic Nematodes

Supervisors: Dr. Ahmed Ahmed Osman Dr. Ali Hassan Hussien

Department: Zoology and Agricultural Nematology

Branch: Agricultural Nematology Approval: 29 / 7 /2010

ABSTRACT

Bacillus thuringiensis, B. megaterium, Glomus spp., Serratia marcescens and Trichoderma album were evaluated for potency to control M. incognita at different application times regarding the time of nematode inoculation and host (eggplant) transplantation. The timings of bioagent application two weeks prior to nematode inoculation and host transplantation, bioagent application with nematodes two weeks prior to host transplantation and double bioagent application times first one with nematode inoculation and the second one at transplantation time decreased the number of galls, females and egg masses/plant, however the same application times didn't succeed in reducing the number of eggs/egg mass. Conversly, the timings of bioagent application two weeks after nematode inoculation and host transplantation, double bioagent application times first with nematode inoculation and transplantation and a second time two weeks later and bioagent application simultaneously with nematode inoculation and host transplantation reduced only the number of eggs/egg mass without any decrease in the number of galls, females or egg masses.

B. thuringiensis, B. megaterium and T. album were evaluated as single and combined bioagent treatments for their potential in reducing root-knot nematode, M. incognita on tomato plant. Most of the single and combined treatments succeeded in reducing the number of galls, females and egg masses, but the best among all the tested single or combined treatments was the treatment B. thuringiensis+T. album, where it significantly decreased all the counted nematode parameters and improved plant growth.

In another study, *B. thuringiensis*, *B. megaterium* and *T. album* were tested at three application rates (0.5, 1 and 2 g/plant) for their efficacy in reducing nematodes on eggplant, the number of eggs/egg mass was the most affected parameter with the applied treatments. The most successful treatment was 2g/plant of *T. album*, where it significantly decreased all the counted nematode parameters. Shoot length was the only criterion that responded to the applied treatments.

When *B. thuringiensis*, *B. megaterium* and *T. album* were applied at the rates 1, 2 and 4g/plant simultaneously with nematodes one week prior to transplantation, it was prevalent that high reduction in nematode counts was associated with applied high rate of the bioagents. *B. thuringiensis* and *T. album* applied at 4g/plant achieved significant reduction in all the counted nematode parameters, and also improved plant health at all of its measured parameters.

Root soaking method for 20 hours in different bioagent rates was evaluated against low (1000j2) and high (3000j2) nematode densities. *T. album* at 1g with the low nematode density was the most successful treatment in reducing nematode density. It was also clear that at treatments against the low nematode density, more than 50% of the treatments affected the number of eggs/egg mass, while with the high nematode density little but significant reduction occurred in the number of eggs/egg mass resulted from less than 50% of the treatments

Key words: *M. incognita, Bacillus, T. album,* application time, combinations, application rate, soaking.

DEDICATION

To the one who made my life full of joy, the one who put me on the first stair, the one who taught me the difference between excellence and fairness, the one whom I am always proud of, the one absent from life present in my heart; to my father may ALLAH rest his soul.

ACKNOWLEDGEMENT

Abundant thanks go to **ALLAH** almighty whom every praise is due.

I wish to express my sincere thanks, indeffable gratitude and appreciation to my worthy supervisor **Dr. Ahmed Ahmed Osman** Professor of Nematology, Faculty of Agriculture, Cairo University, for his ever inspiring guidance, constructive suggestions, continued assistance, keen interest, scholarly comments, munificence, his fatherly behaviour and indescribable patience throughout the course of my study and revision of the manuscript of this thesis.

Sincere thanks to **Dr. Aly Hassan Hussein** Professor of Nematology, Faculty of Agriculture, Cairo University, for sharing in supervision, continual encouragement, endurance and sincere assistance.

Grateful appreciation is also extended to all staff members of Zoology and Agricultural Nematology Department, Faculty of Agriculture, Cairo University, for the sincere encouragement.

Sincere thanks to **Dr. Hassan Amin**, Researcher of Agronomy, Cotton Research Institute, Agricultural Research Center, Giza for his help in the statistical analysis of the results.

Infinite thanks to my mother whom without I would not have been able to execute this work, my late father, my brothers, my step-father for their considerate help. Also I feel deeply grateful to my husband for his appreciation, everlasting love and understanding. I am grateful to my sons AbdAllah and Ali for their support. Special thanks to every member of my family.

Also special thanks to Dr. Ahmed Osman's family for their love, support and encouragement along the way since the work started.

Effort offered by Mr. Abd El-Hameed A. Abd El-Hameed during the experimental work is greatly acknowledged.

Honey baby palace nursery staff is also well acknowledged.

دراسة تأثير بعض العوامل على كفاءة بعض العناصر البيولوجية المستخدمة في مكافحة النيماتودا المتطفلة نباتياً

رسالة مقدمة من

إسراء عثمان عبد الرعوف إبراهيم بكالوريوس في العلوم الزراعية (زراعة دولية) - كلية الزراعة - جامعة القاهرة ،٢٠٠٣

للحصول على درجة

الماجستير

في

العلوم الزراعية (نيماتولوجيا زراعية)

قسم الحيوان و النيماتولوجيا الزراعية كلية الزراعة جامعة القاهرة مصر

۲.1.

دراسة تأثير بعض العوامل على كفاءة بعض العناصر البيولوجية المستخدمة في مكافحة النيماتودا المتطفلة نباتياً

رسالة ماجستير فى العلوم الزراعية (نيماتولوجيا زراعية)

مقدمة من

إسراء عثمان عبد الرعوف إبراهيم بكالوريوس في العلوم الزراعية (زراعة دولية) - كلية الزراعة - جامعة القاهرة ،٢٠٠٣

لجنة الحكم دكتور/ محمود حسن الحموى رئيس بحوث - معهد بحوث أمراض النبات - مركز البحوث الزراعية دكتور/ أحمد عبد السلام فرحات أستاذ النيماتولوجيا - كلية الزراعة - جامعة القاهرة محد عثمان فضل أستاذ النيماتولوجيا - كلية الزراعة - جامعة القاهرة أحمد أحمد عثمان فضل

التاريخ ۲۹/۷/۰۱۰۲

دراسة تأثير بعض العوامل على كفاءة بعض العناصر البيولوجية المستخدمة في مكافحة النيماتودا المتطفلة نباتياً

رسالة ماجستير فى العلوم الزراعية (نيماتولوجيا زراعية)

مقدمة من

إسراء عثمان عبد الرعوف إبراهيم بكالوريوس في العلوم الزراعية (زراعة دولية) - كلية الزراعة - جامعة القاهرة ،٢٠٠٣

لجنة الإشراف

دكتور/ أحمد أحمد عثمان فضل أستاذ النيماتولوجيا- كلية الزراعة-جامعة القاهرة

دكتور/ على حسن حسين أستاذ النيماتولوجيا- كلية الزراعة جامعة القاهرة اسم الطالب: إسراء عثمان عبد الرؤف إبراهيم الطالب: إسراء عثمان عبد الرؤف إبراهيم

عنوان الرسالة: دراسة تأثير بعض العوامل على كفاءة بعض العناصر البيولوجية

المستخدمة في مكافحة النيماتودا المتطفلة نباتياً.

المشرفون: دكتور: أحمد أحمد عثمان فضل

دكتور: على حسن حسين

القسم: الحيوان و النيماتولوجيا الزراعية الفرع: النيماتودا تاريخ منح الدرجة: ٢٩ / ٧ / ٢٠١٠

المستخلص العربي

تم تقييم قدرة كل من Trichoderma album والمحتود المحتود المحتو

تم اختبار كفاءة كل من B. megaterium ،B. thuringiensis و مركبة B. megaterium ، B. thuringiensis فردية و مركبة في تخفيض تعداد M. incognita على نبات الطماطم. أغلب المعاملات سواء الفردية او المركبة أدت الى خفض في عدد العقد الجذرية، عدد الاناث و عدد اكياس البيض و لكن المعاملة B. thuringiensis+T. album كانت الانجح حيث ادت الى خفض في تعداد النيماتودا و أيضاً الى تحسن الصفات الخضرية.

B. في در اسة أخرى تم اختبار قدرة ثلاث معدلات اضافة $(\circ, \circ _0)$ و T جم/نبات) من المستحضرات الحيوية B . thuringiensis, megaterium و B . thuringiensis, megaterium البيض/كيس بيض هو المعيار الاكثر تاثرا بالمعاملات و كان معدل الاضافة T جم من T هو الاكفأ حيث انه الوحيد الذي احدث خفض في جميع مقاييس تطور النيماتودا على النبات. طول الساق كان هو الصفة الخضرية الوحيدة التي استجابت للمعاملات.

عندما اضيفت المستحضرات الحيوية B. thuringiensis, B. megaterium بالمعدلات المستحضرات الحيوية بالمعدلات عندما اضيفت في نفس وقت العدوى بالنيماتودا قبل اسبوع من زراعة العائل، كان واضحا أن الانخفاض في كثافة النيماتودا مرتبط باضافة المعدل الاعلى من المستحضر الحيوى. B. thuringiensis و T. album بمعدل عجرانبات حقق كل منهما انخفاض معنوى في معايير النيماتودا المقاسة بالاضافة الى تحسين نمو النبات.

قدرت طريقة نقع جذور الشتلات لمدة ٢٠ ساعة قبل زراعتها في معدلات مختلفة من المستحضرات الحيوية لمكافحة التعداد العالى و المنخفض من النيماتودا. نجح T. T بمعدل اجم في احداث انخفاض في تعداد النيماتودا عند استخدامة للكثافة المنخفضة. كان واضحا ايضاً ان في حالة المعاملة ضد الكثافة المنخفضة من النيماتودا أثرت اكثر من 00 من المعاملات على عدد البيض/كيس بيض، بينما في حالة الكثافة العالية من النيماتودا اظهرت اقل من 00 من المعاملات تأثر طفيف و لكنه معنوى في عدد البيض/كيس بيض. أدت القليل من المعاملات الى تحسن طفيف في نمو النبات.

الكلمات الدالة: نيماتودا تعقد الجذور، ميعاد الاضافة، مستحضرات حيوية، معدل اضافة، نقع الجذور، ميعاد الزراعة

CONTENTS

INTRODUCTION
REVIEW OF LITERATURE
 Microbial organisms as nematode control agents Time of microbial agent application
3. Combinations of microbial agents
4. Microbial agent rate of application
5. Method of microbial agent application
6. More than one factor
MATERIALS AND METHODS
RESULTS.
1. Performance of biological control agents at different application times on eggplant infected with the root-knot nematode, <i>Meloidogyne incognita</i> under greenhouse conditions.
2. Control efficiency enhancement using biocontrol agents B. thuringiensis, B. megaterium and T. album, as single and combined treatments against Meloidogyne incognita of tomato
3. Potentiality evaluation of the microbial agents, <i>Bacillus thuringiensis</i> (Agerin [®]), <i>B. megaterium</i> (BioArc [®]) and <i>Trichoderma album</i> (BioZied [®]) mixed into soil concomitantly with nematode inoculation for the control
of root-knot nematode, <i>Meloidogyne incognita</i>
B. megaterium and Trichoderma album on tomato infected with root-knot nematode, Meloidogyne incognita
5. Effect of root soaking of eggplant seedlings in microbial concentrations of <i>Bacillus thuringiensis</i> , <i>B. megaterium</i> and <i>Trichoderma album</i> as a prophylactic treatment against low and high population densities of the root-knot
nematode. Meloidogyne incognita

DISCUSSION	
CONCLUSION	•••
SUMMARY	
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Effect of single application of microbial agents to soil two weeks prior to nematode inoculation and host transplantation on developmental stages of <i>Meloidogyne incognita</i>	45
2.	Effect of concomitant application of microbial agents with nematode inoculation two weeks prior to host transplantation on developmental stages of <i>Meloidogyne incognita</i>	48
3.	Effect of dual applications of microbial agents, simultaneously with nematode inoculation and a second one at host transplantation 15 days later on developmental stages of <i>Meloidogyne incognita</i>	50
4.	Effect of microbial agent application two weeks after nematode inoculation & host transplantation on developmental stages of <i>Meloidogyne incognita</i>	52
5.	Effect of dual microbial agent applications one with nematode inoculation & host transplantation and another time two weeks later on developmental stages of <i>Meloidogyne incognita</i>	55
6.	Effect of concurrent host transplantation, nematode, inoculation and microbial agent application on developmental stages of <i>Meloidogyne incognita</i>	57
7.	Effect of single application of microbial agents to soil two weeks prior to nematode inoculation and host transplantation on some plant growth parameters influenced by <i>Meloidogyne incognita</i> infection	59

8.	Effect of concomitant application of microbial agents with nematode inoculation two weeks prior to host transplantation on some plant growth parameters influenced by <i>Meloidogyne incognita</i> infection	60
9.	Effect of double applications of microbial agents, one simultaneously with nematode inoculation and at host transplantation 15 days later on some plant growth parameters influenced by <i>Meloidogyne incognita</i> infection	61
10.	Effect of microbial agent application two weeks after nematode inoculation and host transplantation on some plant growth parameters influenced by <i>Meloidogyne incognita</i> infection	61
11.	Effect of double microbial agent applications one with nematode inoculation and host transplantation and two weeks later on plant growth parameters influenced by <i>Meloidogyne incognita</i> infection	61
12.	Effect of concurrent host transplantation, nematode inoculation, and microbial agent application on some plant growth parameters influenced by <i>Meloidogyne incognita</i> infection.	62
13.	Impact of single and combined treatments of <i>Bacillus</i> thuringiensis, <i>Bacillus megaterium</i> and <i>Trichoderma</i> album on the development of root-knot nematode, <i>M. incognita</i> infecting tomato plants	64
14.	Impact of single and combined treatments of <i>Bacillus</i> thuringiensis, <i>Bacillus</i> megaterium, & Trichoderma album on plant growth of tomato plants infected with	

	root-knot nematode, Meloidogyne incognita	69
15.	Effect of direct application of microbial agents at three application rates (in grams) on the developmental stages of the root-knot nematode, <i>Meloidogyne incognita</i>	72
16.	Effect of direct application of microbial agents, at three application rates (in grams) for controlling the root-knot nematode, <i>Meloidogyne incognita</i> on vegetative parameters.	75
17.	The effect of applying <i>Bacillus thuringiensis</i> , <i>Bacillus megaterium</i> & <i>Trichoderma album</i> , in 3 application rates, 7 days prior to transplantation on the developmental stages of the root-knot nematode, <i>Meloidogyne incognita</i>	77
18.	Effect of applying biocontrol agents in 3 application rates with nematodes 7 days prior to transplantation on plant growth parameters	87
19.	Effect of soaking eggplant roots in microbial concentrations for 20 hours before transplantation on developmental stages of root-knot nematode, <i>Meloidogyne incognita</i> at low (1000 j ₂ /pot) population density	89
20.	Effect of soaking eggplant roots in microbial concentrations for 20 hours before transplantation on developmental stages of root-knot nematode, <i>Meloidogyne incognita</i> at high (3000 j ₂ /pot) population density	91
21.	Effect of soaking eggplant roots in microbial concentrations for 20 hours before transplantation and inoculation with root-knot nematode, <i>Meloidogyne incognita</i> at low (1000 j ₂ /pot) population density on	